Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nature ; 630(8015): 166-173, 2024 Jun.
Article En | MEDLINE | ID: mdl-38778114

For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.


Cell Transdifferentiation , Hepatocytes , Liver Diseases , Liver , Humans , Biliary Tract/cytology , Biliary Tract/metabolism , Biliary Tract/pathology , Biopsy , Cell Plasticity , Chronic Disease , Disease Progression , Epithelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/pathology , Hepatocytes/metabolism , Hepatocytes/cytology , Hepatocytes/pathology , Insulin/metabolism , Liver/pathology , Liver/metabolism , Liver/cytology , Liver Diseases/pathology , Liver Diseases/metabolism , Liver Regeneration , Organoids/metabolism , Organoids/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Seq , Signal Transduction , Single-Cell Analysis , TOR Serine-Threonine Kinases/metabolism
2.
Cell Genom ; 3(1): 100244, 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36777183

Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.

3.
Genes (Basel) ; 13(12)2022 12 01.
Article En | MEDLINE | ID: mdl-36553532

The advances in high-throughput sequencing (HTS) have enabled the characterisation of biological processes at an unprecedented level of detail; most hypotheses in molecular biology rely on analyses of HTS data. However, achieving increased robustness and reproducibility of results remains a main challenge. Although variability in results may be introduced at various stages, e.g., alignment, summarisation or detection of differential expression, one source of variability was systematically omitted: the sequencing design, which propagates through analyses and may introduce an additional layer of technical variation. We illustrate qualitative and quantitative differences arising from splitting samples across lanes on bulk and single-cell sequencing. For bulk mRNAseq data, we focus on differential expression and enrichment analyses; for bulk ChIPseq data, we investigate the effect on peak calling and the peaks' properties. At the single-cell level, we concentrate on identifying cell subpopulations. We rely on markers used for assigning cell identities; both smartSeq and 10× data are presented. The observed reduction in the number of unique sequenced fragments limits the level of detail on which the different prediction approaches depend. Furthermore, the sequencing stochasticity adds in a weighting bias corroborated with variable sequencing depths and (yet unexplained) sequencing bias. Subsequently, we observe an overall reduction in sequencing complexity and a distortion in the biological signal across technologies, experimental contexts, organisms and tissues.


High-Throughput Nucleotide Sequencing , Reproducibility of Results , High-Throughput Nucleotide Sequencing/methods
4.
Nucleic Acids Res ; 49(7): e42, 2021 04 19.
Article En | MEDLINE | ID: mdl-33524142

As the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods available that can remove batch effects, evaluating which method performs best is not straightforward. Here, we present BatchBench (https://github.com/cellgeni/batchbench), a modular and flexible pipeline for comparing batch correction methods for single-cell RNA-seq data. We apply BatchBench to eight methods, highlighting their methodological differences and assess their performance and computational requirements through a compendium of well-studied datasets. This systematic comparison guides users in the choice of batch correction tool, and the pipeline makes it easy to evaluate other datasets.


RNA-Seq/methods , Single-Cell Analysis/methods , Software , Animals , Datasets as Topic , Humans , Mice
...