Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 177
1.
Chem Mater ; 36(8): 3490-3495, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38681084

The discovery of new crystalline inorganic compounds-novel compositions of matter within known structure types, or even compounds with completely new crystal structures-constitutes an important goal of solid-state and materials chemistry. Some fractions of new compounds can eventually lead to new structural and functional materials that enhance the efficiency of existing technologies or even enable completely new technologies. Materials researchers eagerly welcome new approaches to the discovery of new compounds, especially those that offer the promise of accelerated success. The recent report from a group of scientists at Google who employ a combination of existing data sets, high-throughput density functional theory calculations of structural stability, and the tools of artificial intelligence and machine learning (AI/ML) to propose new compounds is an exciting advance. We examine the claims of this work here, unfortunately finding scant evidence for compounds that fulfill the trifecta of novelty, credibility, and utility. While the methods adopted in this work appear to hold promise, there is clearly a great need to incorporate domain expertise in materials synthesis and crystallography.

2.
Angew Chem Int Ed Engl ; 63(21): e202401118, 2024 May 21.
Article En | MEDLINE | ID: mdl-38433100

Inorganic zeolites have excellent molecular sieving properties, but they are difficult to process into macroscopic structures. In this work, we use metal-organic framework (MOF) glass as substrates to engineer the interface with inorganic zeolites, and then assemble the discrete crystalline zeolite powders into monolithic structures. The zeolites are well dispersed and stabilized within the MOF glass matrix, and the monolith has satisfactory mechanical stabilities for membrane applications. We demonstrate the effective separation performance of the membrane for 1,3-butadiene (C4H6) from other C4 hydrocarbons, which is a crucial and challenging separation in the chemical industry. The membrane achieves a high permeance of C4H6 (693.00±21.83 GPU) and a high selectivity over n-butene, n-butane, isobutene, and isobutane (9.72, 9.94, 10.31, and 11.94, respectively). This strategy opens up new possibilities for developing advanced membrane materials for difficult hydrocarbon separations.

3.
J Am Chem Soc ; 145(50): 27850-27856, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38069813

Hybrid halide perovskites AMIIX3 (A = ammonium cation, MII = divalent cation, X = Cl, Br, I) have been extensively studied but have only previously been reported for the divalent carbon group elements Ge, Sn, and Pb. While they have displayed an impressive range of optoelectronic properties, the instability of GeII and SnII and the toxicity of Pb have stimulated significant interest in finding alternatives to these carbon group-based perovskites. Here, we describe the low-temperature solid-state synthesis of five new hybrid iodide perovskites centered around divalent alkaline earth and lanthanide elements, with the general formula AMIII3 (A = methylammonium, MA; MII = Sr, Sm, Eu, and A = formamidinium, FA; MII = Sr, Eu). Structural, calorimetric, optical, photoluminescence, and magnetic properties of these materials are reported.

4.
Nat Commun ; 14(1): 7612, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37993424

The stellar optoelectronic properties of metal halide perovskites provide enormous promise for next-generation optical devices with excellent conversion efficiencies and lower manufacturing costs. However, there is a long-standing ambiguity as to whether the perovskite surface/interface (e.g. structure, charge transfer or source of off-target recombination) or bulk properties are the more determining factor in device performance. Here we fabricate an array of CsPbI3 crystal and hybrid glass composites by sintering and globally visualise the property-performance landscape. Our findings reveal that the interface is the primary determinant of the crystal phases, optoelectronic quality, and stability of CsPbI3. In particular, the presence of a diffusion "alloying" layer is discovered to be critical for passivating surface traps, and beneficially altering the energy landscape of crystal phases. However, high-temperature sintering results in the promotion of a non-stoichiometric perovskite and excess traps at the interface, despite the short-range structure of halide is retained within the alloying layer. By shedding light on functional hetero-interfaces, our research offers the key factors for engineering high-performance perovskite devices.

5.
J Am Chem Soc ; 145(40): 22150-22157, 2023 Oct 11.
Article En | MEDLINE | ID: mdl-37767573

Long-duration storage of hydrogen is necessary for coupling renewable H2 with stationary fuel cell power applications. In this work, aluminum formate (ALF), which adopts the ReO3-type structure, is shown to have remarkable H2 storage performance at non-cryogenic (>120 K) temperatures and low pressures. The most promising performance of ALF is found between 120 K and 160 K and at 10 bar to 20 bar. The study illustrates H2 adsorption performance of ALF over the 77 K to 296 K temperature range using gas isotherms, in situ neutron powder diffraction, and DFT calculations, as well as technoeconomic analysis (TEA), illustrating ALF's competitive performance for long-duration storage versus compressed hydrogen and leading metal-organic frameworks. In the TEA, it is shown that ALF's storage capacity, when combined with a temperature/pressure swing process, has advantages versus compressed H2 at a fraction of the pressure (15 bar versus 350 bar). Given ALF's performance in the 10 bar to 20 bar regime under moderate cooling, it is particularly promising for use in safe storage systems serving fuel cells.

6.
Nanomicro Lett ; 15(1): 203, 2023 Aug 24.
Article En | MEDLINE | ID: mdl-37615796

Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications, especially for the green ammonia (NH3) industry. A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance. Among various types of promising nanomaterials, metal-organic frameworks (MOFs) are competitive candidates for developing efficient electrocatalytic NH3 synthesis from simple nitrogen-containing molecules or ions, such as N2 and NO3-. In this review, recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH3 are collected, categorized, and discussed, including their application in the N2 reduction reaction (NRR) and the NO3- reduction reaction (NO3RR). Firstly, the fundamental principles are illustrated, such as plausible mechanisms of NH3 generation from N2 and NO3-, the apparatus of corresponding electrocatalysis, parameters for evaluation of reaction efficiency, and detection methods of yielding NH3. Then, the electrocatalysts for NRR processes are discussed in detail, including pristine MOFs, MOF-hybrids, MOF-derived N-doped porous carbons, single atomic catalysts from pyrolysis of MOFs, and other MOF-related materials. Subsequently, MOF-related NO3RR processes are also listed and discussed. Finally, the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH3 synthesis are presented, such as the evolution of investigation methods with artificial intelligence, innovation in synthetic methods of MOF-related catalysts, advancement of characterization techniques, and extended electrocatalytic reactions.

7.
Adv Mater ; 35(40): e2304074, 2023 Oct.
Article En | MEDLINE | ID: mdl-37395476

Photoluminescence blinking behavior from single quantum dots under steady illumination is an important but controversial topic. Its occurrence has impeded the use of single quantum dots in bioimaging. Different mechanisms have been proposed to account for it, although controversial, the most important of which is the non-radiative Auger recombination mechanism whereby photocharging of quantum dots can lead to the blinking phenomenon. Here, the singly charged trion, which maintains photon emission, including radiative recombination and non-radiative Auger recombination, leads to fluorescence non-blinking which is observed in photocharged single graphene quantum dots (GQDs). This phenomenon can be explained in terms of different energy levels in the GQDs, caused by various oxygen-containing functional groups in the single GQDs. The suppressed blinking is due to the filling of trap sites owing to a Coulomb blockade. These results provide a profound understanding of the special optical properties of GQDs, affording a reference for further in-depth research.

8.
Angew Chem Int Ed Engl ; 62(32): e202306000, 2023 Aug 07.
Article En | MEDLINE | ID: mdl-37307520

Halide double perovskites [A2 MI MIII X6 ] are an important class of materials that have garnered substantial interest as non-toxic alternatives to conventional lead iodide perovskites for optoelectronic applications. While numerous studies have examined chloride and bromide double perovskites, reports of iodide double perovskites are rare, and their definitive structural characterization has not been reported. Predictive models have aided us here in the synthesis and characterization of five iodide double perovskites of general formula Cs2 NaLnI6 (Ln=Ce, Nd, Gd, Tb, Dy). The complete crystal structures, structural phase transitions, optical, photoluminescent, and magnetic properties of these compounds are reported.

9.
iScience ; 26(5): 106659, 2023 May 19.
Article En | MEDLINE | ID: mdl-37182103

Imines are important intermediates for synthesizing various fine chemicals, with the disadvantage of requiring the use of expensive metal-containing catalysts. We report that the dehydrogenative cross-coupling of phenylmethanol and benzylamine (or aniline) directly forms the corresponding imine with a yield of up to 98%, and water as the sole by-product, in the presence of a stoichiometric base, using carbon nanostructures as the "green" metal-free carbon catalysts with high spin concentrations, which is synthesized by C(sp2)-C(sp3) free radical coupling reactions. The catalytic mechanism is attributed to the unpaired electrons of carbon catalysts to reduce O2 to O2·-, which triggers the oxidative coupling reaction to form imines, whereas the holes in the carbon catalysts receive electrons from the amine to restore the spin states. This is supported by density functional theory calculations. This work will open up an avenue for synthesizing carbon catalysts and offer great potential for industrial applications.

10.
J Am Chem Soc ; 145(21): 11643-11649, 2023 May 31.
Article En | MEDLINE | ID: mdl-37196352

Exclusive capture of carbon dioxide (CO2) from hydrocarbons via adsorptive separation is an important technology in the petrochemical industry, especially for acetylene (C2H2) production. However, the physicochemical similarities between CO2 and C2H2 hamper the development of CO2-preferential sorbents, and CO2 is mainly discerned via C recognition with low efficiency. Here, we report that the ultramicroporous material Al(HCOO)3, ALF, can exclusively capture CO2 from hydrocarbon mixtures, including those containing C2H2 and CH4. ALF shows a remarkable CO2 capacity of 86.2 cm3 g-1 and record-high CO2/C2H2 and CO2/CH4 uptake ratios. The inverse CO2/C2H2 separation and exclusive CO2 capture performance from hydrocarbons are validated via adsorption isotherms and dynamic breakthrough experiments. Notably, the hydrogen-confined pore cavities with appropriate dimensional size provide an ideal pore chemistry to specifically match CO2 via a hydrogen bonding mechanism, with all hydrocarbons rejected. This molecular recognition mechanism is unveiled by in situ Fourier-transform infrared spectroscopy, X-ray diffraction studies, and molecular simulations.

11.
J Am Chem Soc ; 145(17): 9850-9856, 2023 May 03.
Article En | MEDLINE | ID: mdl-37083432

Separating oxygen from air to create oxygen-enriched gas streams is a process that is significant in both industrial and medical fields. However, the prominent technologies for creating oxygen-enriched gas streams are both energy and infrastructure intensive as they use cryogenic temperatures or materials that adsorb N2 from air. The latter method is less efficient than the methods that adsorb O2 directly. Herein, we show, via a combination of gas adsorption isotherms, gas breakthrough experiments, neutron and synchrotron X-ray powder diffraction, Raman spectroscopy, and computational studies, that the metal-organic framework, Al(HCOO)3 (ALF), which is easily prepared at low cost from commodity chemicals, exhibits substantial O2 adsorption and excellent time-dependent O2/N2 selectivity in a range of 50-125 near dry ice/solvent (≈190 K) temperatures. The effective O2 adsorption with ALF at ≈190 K and ≈0.21 bar (the partial pressure of O2 in air) is ≈1.7 mmol/g, and at ice/salt temperatures (≈250 K), it is ≈0.3 mmol/g. Though the kinetics for full adsorption of O2 near 190 K are slower than at temperatures nearer 250 K, the kinetics for initial O2 adsorption are fast, suggesting that O2 separation using ALF with rapid temperature swings at ambient pressures is a potentially viable choice for low-cost air separation applications. We also present synthetic strategies for improving the kinetics of this family of compounds, namely, via Al/Fe solid solutions. To the best of our knowledge, ALF has the highest O2/N2 sorption selectivity among MOF adsorbents without open metal sites as verified by co-adsorption experiments..

12.
Angew Chem Int Ed Engl ; 62(10): e202215295, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36617498

Here, we report kinetic studies using electron spin resonance spectroscopy on spin catalysis reactions caused by using graphene belts which were synthesized by a radical coupling method. The results show that σ-type free radical species provide the dominant sites for catalytic activity through the spin-spin interaction, although there are some other influencing factors. The spin catalysis mechanism can be applied both in the oxygen reduction reaction (ORR) and in organic synthesis. The graphene belt spin catalyst shows excellent performance with a high ORR half-wave potential of 0.81 V and long-term stability with almost no loss of activity after 50 000 cycles in alkaline media. It also shows excellent performance in a benzylamine coupling with molecular oxygen to generate the corresponding imine at an average conversion of ≈97.7 % and an average yield of ≈97.9 %. This work opens up a new research direction for understanding aerobic processes in the field of spin catalysis.

13.
Sci Adv ; 8(44): eade1473, 2022 Nov 04.
Article En | MEDLINE | ID: mdl-36322645

A combination of gas adsorption and gas breakthrough measurements show that the metal-organic framework, Al(HCOO)3 (ALF), which can be made inexpensively from commodity chemicals, exhibits excellent CO2 adsorption capacities and outstanding CO2/N2 selectivity that enable it to remove CO2 from dried CO2-containing gas streams at elevated temperatures (323 kelvin). Notably, ALF is scalable, readily pelletized, stable to SO2 and NO, and simple to regenerate. Density functional theory calculations and in situ neutron diffraction studies reveal that the preferential adsorption of CO2 is a size-selective separation that depends on the subtle difference between the kinetic diameters of CO2 and N2. The findings are supported by additional measurements, including Fourier transform infrared spectroscopy, thermogravimetric analysis, and variable temperature powder and single-crystal x-ray diffraction.

15.
Adv Mater ; 34(39): e2203332, 2022 Sep.
Article En | MEDLINE | ID: mdl-35929459

The rapid development of flexible electronic devices, especially based on 2D materials, has triggered the demand for high-strength materials. Mono- or few-layer phosphorene with excellent electronic properties has attracted extensive attention. However, phosphorene is affected by its low Young's modulus when applied to flexible electronic devices. Here, a strategy via ion intercalation to significantly improve the mechanical properties of black phosphorus to generate hydrogen-bond-bridged phosphorene films with Young's modulus as high as 316 GPa is reported. This value is several times larger than the theoretical values of 166 GPa in the zigzag direction, 44 GPa in the armchair direction, and the averaged Young's modulus among all directions of 94 GPa. The impact of intercalation on mechanical properties is also explored. Experimental nanoindentation results obtained by atomic force microscopy indicate that the relationship between the ratio of intercalated ions to phosphorus atoms and the corresponding Young's modulus satisfies the formula E = e a e - [ ln ( x ) + b ] 2 c ( 0 < x ≤ 1.80 ) \[E{\bm{ = }}{e^{a{e^{\frac{{{\bm{ - }}{{[\ln (x){\bm{ + }}b]}^2}}}{c}}}}}(0{\bm{ < }}x{\bm{ \le }}1.80)\] . Furthermore, a flexible NO2 gas sensor device based on this ultratough material presents excellent performance, even after 10 000 bending cycles. The results provide new insight into the potential for practical applications of black phosphorus devices.

16.
Nat Commun ; 13(1): 4470, 2022 Aug 02.
Article En | MEDLINE | ID: mdl-35918385

Lithium and sodium (Na) mixed polyanion solid electrolytes for all-solid-state batteries display some of the highest ionic conductivities reported to date. However, the effect of polyanion mixing on the ion-transport properties is still not fully understood. Here, we focus on Na1+xZr2SixP3-xO12 (0 ≤ x ≤ 3) NASICON electrolyte to elucidate the role of polyanion mixing on the Na-ion transport properties. Although NASICON is a widely investigated system, transport properties derived from experiments or theory vary by orders of magnitude. We use more than 2000 distinct ab initio-based kinetic Monte Carlo simulations to map the compositional space of NASICON over various time ranges, spatial resolutions and temperatures. Via electrochemical impedance spectroscopy measurements on samples with different sodium content, we find that the highest ionic conductivity (i.e., about 0.165 S cm-1 at 473 K) is experimentally achieved in Na3.4Zr2Si2.4P0.6O12, in line with simulations (i.e., about 0.170 S cm-1 at 473 K). The theoretical studies indicate that doped NASICON compounds (especially those with a silicon content x ≥ 2.4) can improve the Na-ion mobility compared to undoped NASICON compositions.

17.
Angew Chem Int Ed Engl ; 61(30): e202205906, 2022 Jul 25.
Article En | MEDLINE | ID: mdl-35535865

Chiral hybrid metal halides with a high dissymmetry factor (glum ) and a superior photoluminescence quantum yield (PLQY) are promising candidates for circularly polarized luminescence (CPL) light sources. Here, we report eight new chiral hybrid manganese halides, crystallizing in the non-centrosymmetric space group P21 21 21 and showing intense CPL emissions. Oppositely-signed circular dichroism (CD) and CPL signals are detected according to the R- and S-configurations of the chiral alkanolammonium cations. Time-resolved PL spectra show long averaged decay lifetimes up to 1 ms for (R-3-quinuclidinol)MnBr3 (R-1). The glum of polycrystalline samples for coordinated structures (23×10-3 ) is more than doubled compared with the non-coordinated ones (8.5×10-3 ), due to the structural variations. R-1 exhibit both a high glum and a high PLQY (50.2 %). The effective chirality transfer mechanism through coordination bonds, with strongly emissive MnII centers, enables a new class of high-performance CPL materials.

18.
Chem Mater ; 34(9): 4029-4038, 2022 May 10.
Article En | MEDLINE | ID: mdl-35573109

Natrium super ionic conductor (NASICON) compounds form a rich and highly chemically tunable family of crystalline materials that are of widespread interest because they include exemplars with high ionic conductivity, low thermal expansion, and redox tunability. This makes them suitable candidates for applications ranging from solid-state batteries to nuclear waste storage materials. The key to an understanding of these properties, including the origins of effective cation transport and low, anisotropic (and sometimes negative) thermal expansion, lies in the lattice dynamics associated with specific details of the crystal structure. Here we closely examine the prototypical NASICON compound, NaZr2(PO4)3, and obtain detailed insights into such behavior via variable-temperature neutron diffraction and 23Na and 31P solid-state NMR studies, coupled with comprehensive density functional theory-based calculations of NMR parameters. Temperature-dependent NMR studies yield some surprising trends in the chemical shifts and the quadrupolar coupling constants that are not captured by computation unless the underlying vibrational modes of the crystal are explicitly taken into account. Furthermore, the trajectories of the sodium, zirconium, and oxygen atoms in our dynamical simulations show good qualitative agreement with the anisotropic thermal parameters obtained at higher temperatures by neutron diffraction. The work presented here widens the utility of NMR crystallography to include thermal effects as a unique probe of interesting lattice dynamics in functional materials.

19.
J Am Chem Soc ; 144(15): 6661-6666, 2022 Apr 20.
Article En | MEDLINE | ID: mdl-35377623

Hybrid layered double perovskite (HLDP) halides comprise hexacoordinated 1+ and 3+ metals in the octahedral sites within a perovskite layer and organic amine cations between the layers. Progress on such materials has hitherto been limited to compounds containing main group 3+ ions isoelectronic with PbII (such as SbIII and BiIII). Here, we report eight HLDP halides from the A2MIMIIIX8 family, where A = para-phenylenediammonium (PPDA), 1,4-butanediammonium (1,4-BDA), or 1,3-propanediammonium (1,3-PDA); MI = Cu or Ag; MIII = Ru or Mo; X = Cl or Br. The optical band gaps, which lie in the range 1.55 to 2.05 eV, are tunable according to the layer composition, but are largely independent of the spacer. Magnetic measurements carried out for (PPDA)2AgIRuIIICl8 and (PPDA)2AgIMoIIICl8 show no obvious evidence of a magnetic ordering transition. While the t2g3 MoIII compound displays Curie-Weiss behavior for a spin-only d3 ion, the t2g5 RuIII compound displays marked deviations from the Kotani theory.

20.
J Am Chem Soc ; 144(13): 5795-5811, 2022 Apr 06.
Article En | MEDLINE | ID: mdl-35325534

In the pursuit of urgently needed, energy dense solid-state batteries for electric vehicle and portable electronics applications, halide solid electrolytes offer a promising path forward with exceptional compatibility against high-voltage oxide electrodes, tunable ionic conductivities, and facile processing. For this family of compounds, synthesis protocols strongly affect cation site disorder and modulate Li+ mobility. In this work, we reveal the presence of a high concentration of stacking faults in the superionic conductor Li3YCl6 and demonstrate a method of controlling its Li+ conductivity by tuning the defect concentration with synthesis and heat treatments at select temperatures. Leveraging complementary insights from variable temperature synchrotron X-ray diffraction, neutron diffraction, cryogenic transmission electron microscopy, solid-state nuclear magnetic resonance, density functional theory, and electrochemical impedance spectroscopy, we identify the nature of planar defects and the role of nonstoichiometry in lowering Li+ migration barriers and increasing Li site connectivity in mechanochemically synthesized Li3YCl6. We harness paramagnetic relaxation enhancement to enable 89Y solid-state NMR and directly contrast the Y cation site disorder resulting from different preparation methods, demonstrating a potent tool for other researchers studying Y-containing compositions. With heat treatments at temperatures as low as 333 K (60 °C), we decrease the concentration of planar defects, demonstrating a simple method for tuning the Li+ conductivity. Findings from this work are expected to be generalizable to other halide solid electrolyte candidates and provide an improved understanding of defect-enabled Li+ conduction in this class of Li-ion conductors.

...