Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Nanotechnology ; 35(20)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38286015

ABSTRACT

A transfer-free graphene with high magnetoresistance (MR) and air stability has been synthesized using nickel-catalyzed atmospheric pressure chemical vapor deposition. The Raman spectrum and Raman mapping reveal the monolayer structure of the transfer-free graphene, which has low defect density, high uniformity, and high coverage (>90%). The temperature-dependent (from 5 to 300 K) current-voltage (I-V) and resistance measurements are performed, showing the semiconductor properties of the transfer-free graphene. Moreover, the MR of the transfer-free graphene has been measured over a wide temperature range (5-300 K) under a magnetic field of 0 to 1 T. As a result of the Lorentz force dominating above 30 K, the transfer-free graphene exhibits positive MR values, reaching ∼8.7% at 300 K under a magnetic field (1 Tesla). On the other hand, MR values are negative below 30 K due to the predominance of the weak localization effect. Furthermore, the temperature-dependent MR values of transfer-free graphene are almost identical with and without a vacuum annealing process, indicating that there are low density of defects and impurities after graphene fabrication processes so as to apply in air-stable sensor applications. This study opens avenues to develop 2D nanomaterial-based sensors for commercial applications in future devices.

2.
Opt Lett ; 48(22): 5984-5987, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966769

ABSTRACT

We present a scheme to precisely resolve the unperturbed line shape of an optical rubidium clock transition in a high vacuum, by which we avoided the systematic errors of "collision shift" and "modulation shift." The spectral resolution resolved by this scheme is significantly improved such that we can use "Zeeman broadening" to inspect the stray magnetic field, through which we were able to compensate the magnetic field inside the Rb cells to be below 10-3 Gauss. We thus update the absolute frequency of the clock transition and propose a standard operation procedure (SOP) for the clock self-calibration.

3.
Int J Neural Syst ; 33(10): 2350051, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37632142

ABSTRACT

Complete reaching movements involve target sensing, motor planning, and arm movement execution, and this process requires the integration and communication of various brain regions. Previously, reaching movements have been decoded successfully from the motor cortex (M1) and applied to prosthetic control. However, most studies attempted to decode neural activities from a single brain region, resulting in reduced decoding accuracy during visually guided reaching motions. To enhance the decoding accuracy of visually guided forelimb reaching movements, we propose a parallel computing neural network using both M1 and medial agranular cortex (AGm) neural activities of rats to predict forelimb-reaching movements. The proposed network decodes M1 neural activities into the primary components of the forelimb movement and decodes AGm neural activities into internal feedforward information to calibrate the forelimb movement in a goal-reaching movement. We demonstrate that using AGm neural activity to calibrate M1 predicted forelimb movement can improve decoding performance significantly compared to neural decoders without calibration. We also show that the M1 and AGm neural activities contribute to controlling forelimb movement during goal-reaching movements, and we report an increase in the power of the local field potential (LFP) in beta and gamma bands over AGm in response to a change in the target distance, which may involve sensorimotor transformation and communication between the visual cortex and AGm when preparing for an upcoming reaching movement. The proposed parallel computing neural network with the internal feedback model improves prediction accuracy for goal-reaching movements.


Subject(s)
Goals , Upper Extremity , Animals , Feedback , Forelimb/physiology , Movement/physiology
4.
Opt Lett ; 48(9): 2421-2424, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126288

ABSTRACT

In this paper, we present a simple scheme for efficiently removing the residual Doppler background of a comb laser based two-photon spectrometer to be better than 10-3 background-to-signal ratio. We applied this scheme to stabilize the frequencies of a mode-locked Ti:sapphire laser directly referring to the cesium 6S-8S transition and rubidium 5S-5D transition. We suggest a standard operation procedure (SOP) for the fully direct comb laser stabilization and evaluate the frequency of two spectral lines at a certain temperature, by which we demonstrate an all-atomic-transition-based Ti:sapphire comb laser merely via a 6-cm glass cell.

5.
Food Funct ; 14(8): 3686-3700, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36971300

ABSTRACT

The possible mechanism by which the active components of Anhua fuzhuan tea act on FAM in NAFLD lesions was investigated. 83 components of Anhua fuzhuan tea were analysed by UPLC-Q-TOF/MS. Luteolin-7-rutinoside and other compounds were first discovered in fuzhuan tea. According to the TCMSP database and the Molinspiration website tool to predict and review the literature reports, 78 compounds were identified in fuzhuan tea with possible biological activities. The PharmMapper, Swiss target prediction, and SuperPred databases were used to predict the action targets of biologically active compounds. The GeneCards, CTD, and OMIM databases were mined for NAFLD and FAM genes. Then, a fuzhuan Tea-NAFLD-FAM Venn diagram was constructed. Using the STRING database and CytoHubba program of Cytoscape software, protein interaction analysis was performed, and 16 key genes, including PPARG, were screened. GO function and KEGG enrichment analyses of the screened key genes showed that Anhua fuzhuan tea may regulate FAM in the process of NAFLD through the AMPK signalling pathway, nonalcoholic fatty liver disease pathway, etc. After constructing an active ingredient-key target-pathway map with Cytoscape software, combined with literature reports and BioGPS database analysis, we believe that among the 16 key genes, SREBF1, FASN, ACADM, HMGCR, and FABP1 have potential in the treatment of NAFLD. Animal experiments confirmed the effect of Anhua fuzhuan tea in improving NAFLD and confirmed that this tea can interfere with the gene expression of the above five targets by the AMPK/PPAR pathway, providing support for Anhua fuzhuan tea interfering with FAM in NAFLD lesions.


Subject(s)
Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Animals , AMP-Activated Protein Kinases/genetics , Network Pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Databases, Factual , Tea , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation
6.
Biosensors (Basel) ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36832046

ABSTRACT

Increasing requirements for neural implantation are helping to expand our understanding of nervous systems and generate new developmental approaches. It is thanks to advanced semiconductor technologies that we can achieve the high-density complementary metal-oxide-semiconductor electrode array for the improvement of the quantity and quality of neural recordings. Although the microfabricated neural implantable device holds much promise in the biosensing field, there are some significant technological challenges. The most advanced neural implantable device relies on complex semiconductor manufacturing processes, which are required for the use of expensive masks and specific clean room facilities. In addition, these processes based on a conventional photolithography technique are suitable for mass production, which is not applicable for custom-made manufacturing in response to individual experimental requirements. The microfabricated complexity of the implantable neural device is increasing, as is the associated energy consumption, and corresponding emissions of carbon dioxide and other greenhouse gases, resulting in environmental deterioration. Herein, we developed a fabless fabricated process for a neural electrode array that was simple, fast, sustainable, and customizable. An effective strategy to produce conductive patterns as the redistribution layers (RDLs) includes implementing microelectrodes, traces, and bonding pads onto the polyimide (PI) substrate by laser micromachining techniques combined with the drop coating of the silver glue to stack the laser grooving lines. The process of electroplating platinum on the RDLs was performed to increase corresponding conductivity. Sequentially, Parylene C was deposited onto the PI substrate to form the insulation layer for the protection of inner RDLs. Following the deposition of Parylene C, the via holes over microelectrodes and the corresponding probe shape of the neural electrode array was also etched by laser micromachining. To increase the neural recording capability, three-dimensional microelectrodes with a high surface area were formed by electroplating gold. Our eco-electrode array showed reliable electrical characteristics of impedance under harsh cyclic bending conditions of over 90 degrees. For in vivo application, our flexible neural electrode array demonstrated more stable and higher neural recording quality and better biocompatibility as well during the 2-week implantation compared with those of the silicon-based neural electrode array. In this study, our proposed eco-manufacturing process for fabricating the neural electrode array reduced 63 times of carbon emissions compared to the traditional semiconductor manufacturing process and provided freedom in the customized design of the implantable electronic devices as well.


Subject(s)
Polymers , Xylenes , Electrodes, Implanted , Microelectrodes , Nervous System
7.
Health Place ; 78: 102909, 2022 11.
Article in English | MEDLINE | ID: mdl-36127244

ABSTRACT

This paper sets out a theoretical agenda for Cultural Landscapes of Care. It highlights the importance of engaging the cultural vectors within different 'care-ful geographies', in order to highlight the role of culture as both a lens of knowing a meaningful way of life, and a critical hermeneutic. Through revisiting discussions around everyday practices of care, both in this journal and elsewhere, we outline a research agenda that re-engages culture with inquiries into the relations between place and care, including spatialities of care, ethics and justice. We call for a shift to thinking with culture and its moral dimensions in order to make sense of the tensions, ambiguities and boundaries of care marked by austerity, neoliberalism and globalisation. We therefore coin the term 'cultural landscapes of care' to advance an agenda that is contextually and culturally sensitive, and committed to understanding what good care means in diverse trans-local contexts. Gathering together the papers in this collection, we show how culture 'filters' through meaningful everyday care practices. We argue for an understanding of culture as a toolkit and a condition for ethical encounters of care. Thus, we translate situated examples of caring experiences into a global standpoint of care-ful geography.


Subject(s)
Internationality , Humans
8.
Int J Neural Syst ; 32(9): 2250038, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35989578

ABSTRACT

Hippocampal pyramidal cells and interneurons play a key role in spatial navigation. In goal-directed behavior associated with rewards, the spatial firing pattern of pyramidal cells is modulated by the animal's moving direction toward a reward, with a dependence on auditory, olfactory, and somatosensory stimuli for head orientation. Additionally, interneurons in the CA1 region of the hippocampus monosynaptically connected to CA1 pyramidal cells are modulated by a complex set of interacting brain regions related to reward and recall. The computational method of reinforcement learning (RL) has been widely used to investigate spatial navigation, which in turn has been increasingly used to study rodent learning associated with the reward. The rewards in RL are used for discovering a desired behavior through the integration of two streams of neural activity: trial-and-error interactions with the external environment to achieve a goal, and the intrinsic motivation primarily driven by brain reward system to accelerate learning. Recognizing the potential benefit of the neural representation of this reward design for novel RL architectures, we propose a RL algorithm based on [Formula: see text]-learning with a perspective on biomimetics (neuro-inspired RL) to decode rodent movement trajectories. The reward function, inspired by the neuronal information processing uncovered in the hippocampus, combines the preferred direction of pyramidal cell firing as the extrinsic reward signal with the coupling between pyramidal cell-interneuron pairs as the intrinsic reward signal. Our experimental results demonstrate that the neuro-inspired RL, with a combined use of extrinsic and intrinsic rewards, outperforms other spatial decoding algorithms, including RL methods that use a single reward function. The new RL algorithm could help accelerate learning convergence rates and improve the prediction accuracy for moving trajectories.


Subject(s)
Reward , Spatial Navigation , Animals , Learning/physiology , Neurons/physiology , Reinforcement, Psychology
9.
Sci Rep ; 12(1): 9295, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661801

ABSTRACT

Studies have revealed that time-restricted feeding affects the fat oxidation rate; however, its effects on the fat oxidation rate and hyperlipidemia following high-fat meals are unclear. This study investigated the effects of 5-day time-restricted feeding on the fat oxidation rate and postprandial lipemia following high fat meals. In this random crossover experimental study, eight healthy male adults were included each in the 5-day time-restricted feeding trial and the control trial. The meals of the time-restricted feeding trial were provided at 12:00, 16:00, and 20:00. The meals of the control trial were provided at 08:00, 14:00, and 20:00. The contents of the meals of both trials were the same, and the calories of the meals met the 24-h energy requirement of the participants. After 5 days of the intervention, the participants consumed high-fat meals on the sixth day, and their physiological changes were determined. The fasting fat oxidation rate (p < 0.001) and postprandial fat oxidation rate (p = 0.019) of the time-restricted feeding trial were significantly higher than those of the control trial. The 24-h energy consumption and postprandial triglyceride, blood glucose, insulin, glycerol, and free fatty acid concentrations of the two trials showed no significant differences (p > 0.05). The results revealed that 5 days of time-restricted feeding effectively increased the fasting and postprandial fat oxidation rate, but it did not affect postprandial lipemia.


Subject(s)
Fasting , Hyperlipidemias , Adult , Blood Glucose , Cross-Over Studies , Dietary Fats , Humans , Insulin , Male , Postprandial Period/physiology , Triglycerides
10.
Health Place ; 78: 102821, 2022 11.
Article in English | MEDLINE | ID: mdl-35662489

ABSTRACT

This study contributes to the under-researched area of culture in institutional care for people with intellectual disabilities in an East Asian context. Drawing upon in-depth interviews with 20 women frontline care workers for institutionalized people with intellectual disabilities in Taiwan, we examined culture-specific caring relations such as the fictive kinships of Confucian care ethics (i.e., respect for elders and affection for the young), the charity paradigm, and religious compassion, which can induce attentive and respectful care in institutional spaces but also relegate residents to stigmatized subordination in a hierarchy of caring relations and legitimatize the voluntary exploitation of women workers. In situating the relational nature of care and the dis-enabling potentials of culture at the disability-care-place intersection, we promote an ethics of engagement that values and dignifies both recipients and providers of care.


Subject(s)
Intellectual Disability , Humans , Female , Aged , Intellectual Disability/therapy , Taiwan
11.
Sensors (Basel) ; 22(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35271020

ABSTRACT

Ambulatory blood pressure (BP) monitoring (ABPM) is vital for screening cardiovascular activity. The American College of Cardiology/American Heart Association guideline for the prevention, detection, evaluation, and management of BP in adults recommends measuring BP outside the office setting using daytime ABPM. The recommendation to use night-day BP measurements to confirm hypertension is consistent with the recommendation of several other guidelines. In recent studies, ABPM was used to measure BP at regular intervals, and it reduces the effect of the environment on BP. Out-of-office measurements are highly recommended by almost all hypertension organizations. However, traditional ABPM devices based on the oscillometric technique usually interrupt sleep. For all-day ABPM purposes, a photoplethysmography (PPG)-based wrist-type device has been developed as a convenient tool. This optical, noninvasive device estimates BP using morphological characteristics from PPG waveforms. As measurement can be affected by multiple variables, calibration is necessary to ensure that the calculated BP values are accurate. However, few studies focused on adaptive calibration. A novel adaptive calibration model, which is data-driven and embedded in a wearable device, was proposed. The features from a 15 s PPG waveform and personal information were input for estimation of BP values and our data-driven calibration model. The model had a feedback calibration process using the exponential Gaussian process regression method to calibrate BP values and avoid inter- and intra-subject variability, ensuring accuracy in long-term ABPM. The estimation error of BP (ΔBP = actual BP-estimated BP) of systolic BP was -0.1776 ± 4.7361 mmHg; ≤15 mmHg, 99.225%, and of diastolic BP was -0.3846 ± 6.3688 mmHg; ≤15 mmHg, 98.191%. The success rate was improved, and the results corresponded to the Association for the Advancement of Medical Instrumentation standard and British Hypertension Society Grading criteria for medical regulation. Using machine learning with a feedback calibration model could be used to assess ABPM for clinical purposes.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Photoplethysmography , Adult , Blood Pressure , Calibration , Feedback , Humans , United States
12.
Chin J Physiol ; 65(1): 46-50, 2022.
Article in English | MEDLINE | ID: mdl-35229752

ABSTRACT

Carbohydrate mouth rinsing (CMR) potentially affects the interval training performance of taekwondo athletes. This study explored the effect of CMR on vertical jump, kicking speed, and fatigue index before and after simulated taekwondo competition. In a crossover experimental design, 13 trained taekwondo athletes were randomly divided into the CMR and control trials. After warming up, the participants used 6.6% maltodextrin (CMR trial) or mineral water (control trial) to rinse their mouth. Next, the participants underwent tests of vertical jump, kicking speed, and maximum number of kicks. After the tests, the participants rinsed their mouth again, followed by using Wingate testing bikes for 5-s sprint and 25-s rest to simulate taekwondo competitions. Four repetitions were performed in each round for 2 min for a total of three rounds. The results revealed that the fatigue index of the participants in the CMR trial before and after the simulated competition was significantly lower than that of the control trial. However, the two trials differed nonsignificantly in their performance in vertical jump, kicking speed, and the simulated competition. Overall, the study results indicated that CMR reduces the fatigue index but no change was observed in performance for vertical jump, kicking speed, and the simulated competition of trained taekwondo athletes.


Subject(s)
Athletic Performance , Martial Arts , Carbohydrates , Fatigue , Humans , Mouthwashes
13.
World J Gastrointest Oncol ; 14(2): 450-477, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35317323

ABSTRACT

BACKGROUND: In traditional Chinese medicine (TCM), frankincense and myrrh are the main components of the antitumor drug Xihuang Pill. These compounds show anticancer activity in other biological systems. However, whether frankincense and/or myrrh can inhibit the occurrence of hepatocellular carcinoma (HCC) is unknown, and the potential molecular mechanism(s) has not yet been determined. AIM: To predict and determine latent anti-HCC therapeutic targets and molecular mechanisms of frankincense and myrrh in vivo. METHODS: In the present study, which was based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (http://tcmspw.com/tcmsp.php), Universal Protein database (http://www.uniprot.org), GeneCards: The Human Gene Database (http://www.genecards.org/) and Comparative Toxicogenomics Database (http://www.ctdbase.org/), the efficacy of and mechanism by which frankincense and myrrh act as anti-HCC compounds were predicted. The core prediction targets were screened by molecular docking. In vivo, SMMC-7721 human liver cancer cells were transplanted as xenografts into nude mice to establish a subcutaneous tumor model, and two doses of frankincense plus myrrh or one dose of an EGFR inhibitor was administered to these mice continuously for 14 d. The tumors were collected and evaluated: the tumor volume and growth rate were gauged to evaluate tumor growth; hematoxylin-eosin staining was performed to estimate histopathological changes; immunofluorescence (IF) was performed to detect the expression of CD31, α-SMA and collagen IV; transmission electron microscopy (TEM) was conducted to observe the morphological structure of vascular cells; enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of secreted HIF-1α and TNF-α; reverse transcription-polymerase chain reaction (RT-qPCR) was performed to measure the mRNA expression of HIF-1α, TNF-α, VEGF and MMP-9; and Western blot (WB) was performed to determine the levels of proteins expressed in the EGFR-mediated PI3K/Akt and MAPK signaling pathways. RESULTS: The results of the network pharmacology analysis showed that there were 35 active components in the frankincense and myrrh extracts targeting 151 key targets. The molecular docking analysis showed that both boswellic acid and stigmasterol showed strong affinity for the targets, with the greatest affinity for EGFR. Frankincense and myrrh treatment may play a role in the treatment of HCC by regulating hypoxia responses and vascular system-related pathological processes, such as cytokine-receptor binding, and pathways, such as those involving serine/threonine protein kinase complexes and MAPK, HIF-1 and ErbB signaling cascades. The animal experiment results were verified. First, we found that, through frankincense and/or myrrh treatment, the volume of subcutaneously transplanted HCC tumors was significantly reduced, and the pathological morphology was attenuated. Then, IF and TEM showed that frankincense and/or myrrh treatment reduced CD31 and collagen IV expression, increased the coverage of perivascular cells, tightened the connection between cells, and improved the shape of blood vessels. In addition, ELISA, RT-qPCR and WB analyses showed that frankincense and/or myrrh treatment inhibited the levels of hypoxia-inducible factors, inflammatory factors and angiogenesis-related factors, namely, HIF-1α, TNF-α, VEGF and MMP-9. Furthermore, mechanistic experiments illustrated that the effect of frankincense plus myrrh treatment was similar to that of an EGFR inhibitor with regard to controlling EGFR activation, thereby inhibiting the phosphorylation activity of its downstream targets: the PI3K/Akt and MAPK (ERK, p38 and JNK) pathways. CONCLUSION: In summary, frankincense and myrrh treatment targets tumor blood vessels to exert anti-HCC effects via EGFR-activated PI3K/Akt and MAPK signaling pathways, highlighting the potential of this dual TCM compound as an anti-HCC candidate.

14.
Front Neurol ; 13: 747053, 2022.
Article in English | MEDLINE | ID: mdl-35330804

ABSTRACT

Response inhibition refers to the ability to suppress inappropriate actions that interfere with goal-driven behavior. The inferior frontal gyrus (IFG) is known to be associated with inhibition of a motor response by assuming executive control over motor cortex outputs. This study aimed to evaluate the pediatric development of response inhibition through subdural electrocorticography (ECoG) recording. Subdural ECoG recorded neural activities simultaneously during a Go/No-Go task, which was optimized for children. Different frequency power [theta: 4-8 Hz; beta: 12-40 Hz; high-gamma (HG): 70-200 Hz] was estimated within the IFG and motor cortex. Age-related analysis was computed by each bandpass power ratio between Go and No-Go conditions, and phase-amplitude coupling (PAC) over IFG by using the modulating index metric in two conditions. For all the eight pediatric patients, HG power was more activated in No-Go trials than in Go trials, in either right- or left-side IFG when available. In the IFG region, the power over theta and HG in No-Go conditions was higher than those in Go conditions, with significance over the right side (p < 0.05). The age-related lateralization from both sides to the right side was observed from the ratio of HG power and PAC value between the No-Go and Go trials. In the pediatric population, the role of motor inhibition was observed in both IFG, with age-related lateralization to the right side, which was proved in the previous functional magnetic resonance imaging studies. In this study, the evidence correlation of age and response inhibition was observed directly by the evidence of cortical recordings.

15.
Biosensors (Basel) ; 12(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35200335

ABSTRACT

Rapid eye movement (REM) sleep behavior disorder (RBD) is associated with Parkinson's disease (PD). In this study, a smartwatch-based sensor is utilized as a convenient tool to detect the abnormal RBD phenomenon in PD patients. Instead, a questionnaire with sleep quality assessment and sleep physiological indices, such as sleep stage, activity level, and heart rate, were measured in the smartwatch sensors. Therefore, this device can record comprehensive sleep physiological data, offering several advantages such as ubiquity, long-term monitoring, and wearable convenience. In addition, it can provide the clinical doctor with sufficient information on the patient's sleeping patterns with individualized treatment. In this study, a three-stage sleep staging method (i.e., comprising sleep/awake detection, sleep-stage detection, and REM-stage detection) based on an accelerometer and heart-rate data is implemented using machine learning (ML) techniques. The ML-based algorithms used here for sleep/awake detection, sleep-stage detection, and REM-stage detection were a Cole-Kripke algorithm, a stepwise clustering algorithm, and a k-means clustering algorithm with predefined criteria, respectively. The sleep staging method was validated in a clinical trial. The results showed a statistically significant difference in the percentage of abnormal REM between the control group (1.6 ± 1.3; n = 18) and the PD group (3.8 ± 5.0; n = 20) (p = 0.04). The percentage of deep sleep stage in our results presented a significant difference between the control group (38.1 ± 24.3; n = 18) and PD group (22.0 ± 15.0, n = 20) (p = 0.011) as well. Further, our results suggested that the smartwatch-based sensor was able to detect the difference of an abnormal REM percentage in the control group (1.6 ± 1.3; n = 18), PD patient with clonazepam (2.0 ± 1.7; n = 10), and without clonazepam (5.7 ± 7.1; n = 10) (p = 0.007). Our results confirmed the effectiveness of our sensor in investigating the sleep stage in PD patients. The sensor also successfully determined the effect of clonazepam on reducing abnormal REM in PD patients. In conclusion, our smartwatch sensor is a convenient and effective tool for sleep quantification analysis in PD patients.


Subject(s)
Clonazepam/pharmacology , Parkinson Disease , REM Sleep Behavior Disorder , Algorithms , Humans , Parkinson Disease/diagnosis , REM Sleep Behavior Disorder/complications , REM Sleep Behavior Disorder/diagnosis , Sleep
16.
Adv Healthc Mater ; 11(11): e2101310, 2022 06.
Article in English | MEDLINE | ID: mdl-34971080

ABSTRACT

A remote optogenetic device for analyzing freely moving animals has attracted extensive attention in optogenetic engineering. In particular, for peripheral nerve regions, a flexible device is needed to endure the continuous bending movements of these areas. Here, a remote optogenetic optical transducer device made from a gold inverse opaline skeleton grown with a dendrite-like gold nanostructure (D-GIOF) and chemically grafted with upconversion nanoparticles (UCNPs) is developed. This implantable D-GIOF-based transducer device can achieve synergistic interaction of the photonic crystal effect and localized surface plasmon resonance, resulting in considerable UCNP conversion efficiency with a negligible thermal effect under low-intensity 980 nm near-infrared (NIR) light excitation. Furthermore, the D-GIOF-based transducer device exhibits remarkable emission power retention (≈100%) under different bending states, indicating its potential for realizing peripheral nerve stimulation. Finally, the D-GIOF-based transducer device successfully stimulates neuronal activities of the sciatic nerve in mice. This study demonstrates the potential of the implantable device to promote remote NIR stimulation for modulation of neural activity in peripheral nerve regions and provides proof of concept for its in vivo application in optogenetic engineering.


Subject(s)
Optogenetics , Animals , Dendrites , Mice , Neurons/physiology , Optogenetics/methods , Transducers
17.
Nucleic Acids Res ; 49(22): 13150-13164, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34850144

ABSTRACT

Genome segregation is a vital process in all organisms. Chromosome partitioning remains obscure in Archaea, the third domain of life. Here, we investigated the SegAB system from Sulfolobus solfataricus. SegA is a ParA Walker-type ATPase and SegB is a site-specific DNA-binding protein. We determined the structures of both proteins and those of SegA-DNA and SegB-DNA complexes. The SegA structure revealed an atypical, novel non-sandwich dimer that binds DNA either in the presence or in the absence of ATP. The SegB structure disclosed a ribbon-helix-helix motif through which the protein binds DNA site specifically. The association of multiple interacting SegB dimers with the DNA results in a higher order chromatin-like structure. The unstructured SegB N-terminus plays an essential catalytic role in stimulating SegA ATPase activity and an architectural regulatory role in segrosome (SegA-SegB-DNA) formation. Electron microscopy results also provide a compact ring-like segrosome structure related to chromosome organization. These findings contribute a novel mechanistic perspective on archaeal chromosome segregation.


Subject(s)
Archaeal Proteins/genetics , Chromosome Segregation , Chromosomes, Archaeal/genetics , DNA, Archaeal/genetics , Sulfolobus solfataricus/genetics , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Crystallography, X-Ray , DNA, Archaeal/chemistry , DNA, Archaeal/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Microscopy, Electron , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Sulfolobus solfataricus/metabolism
18.
Polymers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34641122

ABSTRACT

To improve bovine corneal endothelial cell (BCEC) migration, enhance cell energy, and facilitate symmetric cell distribution in corneal surfaces, an electromagnet device was fabricated. Twenty nanometer superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with fourth-generation dendrimer macromolecules were synthesized, and their size and structure were evaluated using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results confirmed the configuration of the dendrimer on the SPION surfaces. In vitro biocompatibility was assessed using the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide assay. No significant toxicity was noted on BCECs within 24 h of incubation. In the cell migration assay, cells treated with dendrimer-coated SPIONs exhibited a relatively high wound healing rate under sample addition (1 µg/mL) under a magnetic field. Real-time PCR on BCECs treated with dendrimer-coated SPIONs revealed upregulation of specific genes, including AT1P1 and NCAM1, for BCECs-dendrimer-coated SPIONs under a magnetic field. The three-dimensional dispersion of BCECs containing dendrimer-coated SPIONs under a magnetic field was evaluated using COMSOL Multiphysics software. The results revealed the BCECs-SPION vortex pattern layers in the corneal surface corresponded to the electromagnet's displacement from the ocular surface. Magnetic resonance imaging (MRI) indicated that dendrimer-coated SPIONs can be used as a T2 contrast agent.

19.
PLoS One ; 16(2): e0245286, 2021.
Article in English | MEDLINE | ID: mdl-33544751

ABSTRACT

The use of magnetic nanoparticles (MNPs) magnetized on applying an alternating magnetic field (AMF) to stimulate the thermal characteristics and to induce tumor apoptosis is a currently active area of research in cancer treatment. In previous work, we developed biocompatible and superparamagnetic polystyrene-sulfonic-acid-coated magnetic nanoparticles (PSS-MNPs) as applications for magnetically labeled cell trapping, but without assessment of treatment effects on tumor diseases. In the present work, we examined PSS-MNP-induced magnetic fluid hyperthermia (MFH) on SK-Hep1 hepatocellular carcinoma (HCC) cells for lethal thermal effects with a self-made AMF system; an adjustable AMF frequency generated a variable intensity of magnetic field and induced MNP relaxation. The extracellular and intracellular MFH treatments on a SK-Hep1 cell line were implemented in vitro; the result indicates that the lethal effects were efficient and caused a significantly decreased cell viability of SK-Hep1 cells. As the PSS-MNP concentration decreased, especially in intracellular MFH treatments, the MFH effects on cells, however, largely decreased through heat spreading to the culture medium. On controlling and decreasing the volume of culture medium, the problem of heat spreading was solved. It can be consequently expected that PSS-MNPs would be a prospective agent for intracellular cancer magnetotherapy.


Subject(s)
Carcinoma, Hepatocellular/therapy , Hyperthermia, Induced/methods , Liver Neoplasms/therapy , Magnetite Nanoparticles/therapeutic use , Polystyrenes/therapeutic use , Cell Line, Tumor , Cell Survival , Humans
20.
Front Psychol ; 12: 768754, 2021.
Article in English | MEDLINE | ID: mdl-35111103

ABSTRACT

Recent research on body and head positions has shown that postural changes may induce varying degrees of changes on acoustic speech signals and articulatory gestures. While the preservation of formant profiles across different postures is suitably accounted for by the two-tube model and perturbation theory, it remains unclear whether it is resulted from the accommodation of tongue postures. Specifically, whether the tongue accommodates the changes in head angle to maintain the target acoustics is yet to be determined. The present study examines vowel acoustics and their correspondence with the articulatory maneuvers of the tongue, including both tongue postures and movements of the tongue center, across different head angles. The results show that vowel acoustics, including pitch and formants, are largely unaffected by upward or downward tilting of the head. These preserved acoustics may be attributed to the lingual gestures that compensate for the effects of gravity. Our results also reveal that the tongue postures in response to head movements appear to be vowel-dependent, and the tongue center may serve as an underlying drive that covariates with the head angle changes. These results imply a close relationship between vowel acoustics and tongue postures as well as a target-oriented strategy for different head angles.

SELECTION OF CITATIONS
SEARCH DETAIL
...