Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 139
1.
Sci Total Environ ; 934: 173133, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38734091

The high use of plastic wraps leads to significant environmental pollution. In this study, the surface structure and microbial community evolution of commercially available plastic wraps [polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), and polylactic acid (PLA)] in constructed wetlands (CWs) were investigated. The results indicated that all plastic wraps gradually decreased in molecular weight, crystallinity, melting, and crystallization temperatures, whereas a gradual increase was observed in the surface roughness, polymer dispersity index (PDI), carbonyl index (CI) and Shannon index of microorganisms colonizing the CWs. The aging rate of the plastic wrap was in the order: PLA > PVC > PE > PVDC, at the same site in the CWs, and it was in the order: soil surface > plant roots > subsoil, for the same plastic wrap. The diversity of microorganisms colonizing the same plastic wrap was in the order: plant roots > subsoil > soil surface. The Shannon indices of microorganisms on plastic wraps were lower than those in the soil, indicating that the diversity of microorganisms colonizing plastic wraps is limited. Additionally, the microbial community structure on the plastic surface was co-differentiated by the plastic type, placement position in the CWs, and aging time. Significantly different microbial community structures were found on the PVC and PVDC wrap surfaces, revealing that the chlorine in plastics limits microbial diversity. Unclassified members of Rhizobiaceae and Pseudomonadaceae were the dominant genera on the surface of the plastic wraps, suggesting that they may be the microorganisms involved in plastic degradation processes. The study provides valuable perspectives to facilitate a comprehensive understanding of the migration, fate, and environmental risks associated with microplastics (MPs) in wetlands.


Microbiota , Plastics , Wetlands , Soil Microbiology , Water Pollutants, Chemical/analysis
2.
J Org Chem ; 89(11): 7741-7746, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38741558

A novel three-component cyclization carbonylation reaction of iodoarene-tethered propargyl ethers with amine and CO is reported. This palladium-catalyzed cascade reaction undergoes a sequence of oxidative addition, unsaturated bond migration, carbonyl insertion, and nucleophilic attack to deliver the benzofuran skeleton. Both aromatic amines and aliphatic amines could proceed smoothly in this transformation under one atm of CO.

3.
J Mol Graph Model ; 130: 108782, 2024 Jul.
Article En | MEDLINE | ID: mdl-38685182

The interactions of the micro-mechanism of hydroxymethanesulfonic acid (HMSA) with the typical small organic molecule in atmospheric (X = methanol, formaldehyde, formic acid, methyl formate, dimethyl ether, acetone) has been investigated by density functional theory (DFT), quantum theory of atoms in molecules (QTAIM), Generalized Kohn-Sham Enery Decomposition Analysis (GKS-EDA) and the atmospheric clusters dynamic code (ACDC). The results of DFT show that the stable six- to eight-membered ring structures are easily formed in HMSA-X clusters. According to the topological analysis results of the AIM theory and the IRI method, a strong hydrogen bonding interaction is present in the complex. GKS-EDA results show that electrostatic energy is the main contributor to the interaction energy as it accounts for 51 %-55 % of the total attraction energy. The evaporation rates of HMSA-HMSA and HMSA-HCOOH clusters were much lower than those of the other HMSA complexes. In addition, the Gibbs energy of formation (ΔG) of HMSA-X dimers is investigated under atmosphere temperature T = 217-298 K and p = 0.19-1.0 atm, the ΔG decreased with decreasing of the atmosphere temperature and increased with the decrease of atmospheric pressure, indicating that the low temperature and high pressure may significantly facilitate to the formation of dimers.


Atmosphere , Hydrogen Bonding , Atmosphere/chemistry , Thermodynamics , Organic Chemicals/chemistry , Models, Molecular , Quantum Theory , Mesylates/chemistry , Static Electricity , Temperature
4.
Org Lett ; 26(17): 3575-3580, 2024 May 03.
Article En | MEDLINE | ID: mdl-38636450

We introduce switchable chemoselectivity strategies based on the hydrazone phosphaketene intermediate to synthesize three classes of 1,2,4-diazaphosphol derivatives. First, the five-membered heterocyclic P and O anion intermediates acted as nucleophilic agents in the selective construction of C-P and C-O bonds. Second, the phosphinidene served as a phosphorus synthon, allowing for the formation of C-P and C-N bonds. Finally, a stepwise mechanism, supported by DFT calculations, was invoked to explain the reaction selectivity.

5.
Org Lett ; 26(18): 3691-3696, 2024 May 10.
Article En | MEDLINE | ID: mdl-38662519

O-Acylhydroxylamine has been widely employed as an electrophilic amination reagent in transition-metal-catalyzed C-N coupling reactions, but its use as an electrophilic oxygen source has not been disclosed. Here, we report a Pd-catalyzed 1,2-oxyarylation of alkenes with O-acylhydroxylamines as an oxidant and an oxygen source for the first time. With simple amide as the monodentate directing group, this method features a broad substrate scope, good functional group tolerance, and mild conditions.

6.
Hepatology ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38537134

BACKGROUND AND AIMS: HBV infection is a major etiology of acute-on-chronic liver failure (ACLF). At present, the pattern and regulation of hepatocyte death during HBV-ACLF progression are still undefined. Evaluating the mode of cell death and its inducers will provide new insights for developing therapeutic strategies targeting cell death. In this study, we aimed to elucidate whether and how immune landscapes trigger hepatocyte death and lead to the progression of HBV-related ACLF. APPROACH AND RESULTS: We identified that pyroptosis represented the main cell death pattern in the liver of patients with HBV-related ACLF. Deficiency of MHC-I in HBV-reactivated hepatocytes activated cytotoxic NK cells, which in turn operated in a perforin/granzyme-dependent manner to trigger GSDMD/caspase-8-dependent pyroptosis of hepatocytes. Neutrophils selectively accumulated in the pyroptotic liver, and HMGB1 derived from the pyroptotic liver constituted an important factor triggering the generation of pathogenic extracellular traps in neutrophils (NETs). Clinically, elevated plasma levels of myeloperoxidase-DNA complexes were a promising prognostic biomarker for HBV-related ACLF. More importantly, targeting GSDMD pyroptosis-HMGB1 release in the liver abrogates NETs that intercept the development of HBV-related ACLF. CONCLUSIONS: Studying the mechanisms that selectively modulate GSDMD-dependent pyroptosis, as well as its immune landscapes, will provide a novel strategy for restoring the liver function of patients with HBV-related ACLF.

7.
Chemistry ; 30(29): e202400567, 2024 May 23.
Article En | MEDLINE | ID: mdl-38501983

The potential for scale-up application has been acknowledged by researchers for rechargeable aqueous zinc-ion batteries (ZIBs). Nonetheless, the progress of the development is significantly impeded due to the instability of the interface between the zinc anode and electrolyte. Herein, efficient and environmentally benign valine (Val) were introduced as aqueous electrolyte additive to stabilize the electrode/electrolyte interface (EEI) via functional groups in additive molecules, thus achieving reversible dendrite-free zinc anode. The amino groups present in Val molecules have a strong ability to adsorb on the surface of zinc metal, enabling the construction of anchored molecular layer on the surface of zinc anodes. The strongly polar carboxyl groups in Val molecules can act as ion-transport pumps to capture zinc ions in the electric double layer (EDL) through coordination chemistry. Therefore, this reconstructed EEI could modulate the zinc ion flux and simultaneously suppress side reactions and dendritic growth of Zn. Consequently, a long stable cycling up to 1400 h at a high current density of 20 mA cm-2 is achieved. Additionally, Zn//V2O5 full cell with Val additive exhibit enhanced cyclability, retaining 77 % capacity after 3000 cycles, displaying significant potential in promoting the commercialization of ZIBs.

8.
ACS Appl Mater Interfaces ; 16(12): 14954-14964, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38497105

Al-Li alloys are feasible and promising additives in advanced energy and propellant systems due to the significantly enhanced heat release and increased specific impulse. The thermal properties of Al-Li alloys directly determine the manufacturing, storage safety, and ignition delay of propellants. In this study, a neural network potential (NNP) is developed to investigate the thermal behaviors of Al-Li alloys from an atomistic perspective. The novel NNP demonstrates an excellent predictive ability for energy, atomic force, mechanical behaviors, phonon vibrations, and dynamic evolutions. A series of NNP-based molecular dynamics simulations are performed to investigate the effect of Li doping on the thermal properties of Al-Li alloys. All calculated results for Al-Li alloys are consistent with experimental values for Al, ensuring their validity in predicting Al-Li interactions. The simulation results suggest that a minor increment in the Li content results in a slight change in the melting point, thermal expansion, and radical distribution functions. These three properties are associated with the lattice characteristics; nonetheless, it causes a substantial reduction in thermal conductivity, which is related to the physical properties of the elements. The lower thermal conductivity allows heat accumulation on the particle surface, thereby speeding up the surface premelt and ignition. This provides an alternative atomic explanation for the improved combustion performance of Al-Li alloys. These findings integrate insights from the field of alloy material science into crucial combustion applications, serving as an atomistic guide for developing manufacturing techniques.

10.
Phys Chem Chem Phys ; 26(13): 9984-9997, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38477375

Molecular simulations of high energetic materials (HEMs) are limited by efficiency and accuracy. Recently, neural network potential (NNP) models have achieved molecular simulations of millions of atoms while maintaining the accuracy of density functional theory (DFT) levels. Herein, an NNP model covering typical HEMs containing C, H, N, and O elements is developed. The mechanical and decomposition properties of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), hexahydro-1,3,5-trinitro-1,3,5-triazine (HMX), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) are determined by employing the molecular dynamics (MD) simulations based on the NNP model. The calculated results show that the mechanical properties of α-RDX, ß-HMX, and ε-CL-20 agree with previous experiments and theoretical results, including cell parameters, equations of state, and elastic constants. In the thermal decomposition simulations, it is also found that the initial decomposition reactions of the three crystals are N-NO2 homolysis, corresponding radical intermediates formation, and NO2-induced reactions. This decomposition trajectory is mainly divided into two stages separating from the peak of NO2: pyrolysis and oxidation. Overall, the NNP model for C/H/N/O elements in this work is an alternative reactive force field for RDX, HMX, and CL-20 HEMs, and it opens up new potential for future kinetic study of nitramine explosives.

11.
Phys Chem Chem Phys ; 26(15): 11545-11557, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38532730

A neural network potential (NNP) is developed to investigate the decomposition mechanism of RDX, AP, and their composites. Utilizing an ab initio dataset, the NNP is evaluated in terms of atomic energy and forces, demonstrating strong agreement with ab initio calculations. Numerical stability tests across a range of timesteps reveal excellent stability compared to the state-of-the-art ReaxFF models. Then the thermal decomposition of pure RDX, AP, and RDX/AP composites is performed using NNP to explore the coupling effect between RDX and AP. The results highlight a dual interaction between RDX and AP, i.e., AP accelerates RDX decomposition, particularly at low temperatures, and RDX promotes AP decomposition. Analyzing RDX trajectories at the RDX/AP interface unveils a three-part decomposition mechanism involving N-N bond cleavage, H transfer with AP to form Cl-containing acid, and chain-breaking reactions generating small molecules such as N2, CO, and CO2. The presence of AP enhances H transfer reactions, contributing to its role in promoting RDX decomposition. This work studies the reaction kinetics of RDX/AP composites from the atomic point of view, and can be widely used in the establishment of reaction kinetics models of composite systems with energetic materials.

12.
Front Cardiovasc Med ; 11: 1352921, 2024.
Article En | MEDLINE | ID: mdl-38500760

Introduction: The presence of abdominal aortic calcification (AAC) is strongly linked to the development of atherosclerosis and the incidence of morbidity and mortality related to cardiovascular diseases (CVD). Urinary albumin creatinine ratio (UACR) was found related with the increased risk of CVD. The aim of this study is to explore the relationship between the UACR and severe AAC (SAAC). Methods and Results: This study included a total of 2,379 individuals aged over 40 years, and their information was obtained from the National Health and Nutrition Examination Survey conducted (NHANES) in 2013-2014. The measurement of AAC was conducted through dual-energy x-ray absorptiometry and assessed using the Kauppila scoring system. SAAC was characterized by a Kauppila score of 6 or higher. Multivariate regression models were used to analyze the relationship between UACR level and SAAC, with covariate adjustment. In the completely adapted model, the top third subgroup exhibits increased likelihood of SAAC (odds ratio 1.50; 95%CI: 0.98, 2.29; p = 0.030) in contrast to the bottom third subgroup. The subgroup analyses revealed a more pronounced correlation among the older participants (p-value for interaction = 0.013). Discussion: In the United States, SAAC was more likely to occur in adults who had a higher probability of UACR. The use of UACR has the potential to be a valuable method for forecasting the likelihood of SAAC.

13.
Mol Ther ; 32(4): 1110-1124, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38341612

Whether and how tumor intrinsic signature determines macrophage-elicited metastasis remain elusive. Here, we show, in detailed studies of data regarding 7,477 patients of 20 types of human cancers, that only 13.8% ± 2.6%/27.9% ± 3.03% of patients with high macrophage infiltration index exhibit early recurrence/vascular invasion. In parallel, although macrophages enhance the motility of various hepatoma cells, their enhancement intensity is significantly heterogeneous. We identify that the expression of malignant Dicer, a ribonuclease that cleaves miRNA precursors into mature miRNAs, determines macrophage-elicited metastasis. Mechanistically, the downregulation of Dicer in cancer cells leads to defects in miRNome targeting NF-κB signaling, which in turn enhances the ability of cancer cells to respond to macrophage-related inflammatory signals and ultimately promotes metastasis. Importantly, transporting miR-26b-5p, the most potential miRNA targeting NF-κB signaling in hepatocellular carcinoma, can effectively reverse macrophage-elicited metastasis of hepatoma in vivo. Our results provide insights into the crosstalk between Dicer-elicited miRNome and cancer immune microenvironments and suggest that strategies to remodel malignant cell miRNome may overcome pro-tumorigenic activities of inflammatory cells.


Carcinoma, Hepatocellular , MicroRNAs , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Carcinoma, Hepatocellular/pathology , Signal Transduction/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/metabolism , Cell Line, Tumor , Tumor Microenvironment/genetics
14.
Phys Chem Chem Phys ; 26(8): 7029-7041, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38345363

Machine learning (ML) provides a promising method for efficiently and accurately predicting molecular properties. Using ML models to predict the enthalpy of formation of energetic molecules helps in fast screening of potential high-energy molecules, thereby accelerating the design of energetic materials. A persistent challenge is to determine the optimal featurization methods for molecular representation and use an appropriate ML model. Thus, in our study, we evaluate various featurization methods (CDS, ECFP, SOAP, GNF) and ML models (RF, MLP, GCN, MPNN), dividing them into two groups: conventional ML models and GNN models, to predict the enthalpy of formation of potential high-energy molecules. Our results demonstrate that CDS and SOAP have advantages over the ECFP, while the GNFs in GCN and MPNN models perform better. Furthermore, the MPNN model performs best among all models with a root mean square error (RMSE) as low as 8.42 kcal mol-1, surpassing even the best performing CDS-MLP model in conventional ML models. Overall, this study provides a benchmark for ML in predicting enthalpy of formation and emphasizes the tremendous potential of GNN in property prediction.

15.
Biomol Biomed ; 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38112517

Obesity has been linked to the risk of gestational diabetes mellitus (GDM). The meta-analysis aimed to assess the predictive role of ultrasonographic measurements of the abdominal adipose tissue thickness for GDM in pregnant women. Cohort studies evaluating the association between abdominal subcutaneous and/or visceral adipose thickness (SAT and/or VAT) and subsequent risk of GDM were retrieved from PubMed, Embase, and Web of Science databases. Only studies with SAT/VAT measured before the diagnosis of GDM were included. Random-effects models incorporating the influence of potential heterogeneity were used to pool the results. A total of 13 studies involving 5616 pregnant women were included. Pooled results showed that both a high abdominal SAT (odds ratio [OR] for per 1-cm increment: 1.23, 95% confidence interval [CI]: 1.07 to 1.41, P = 0.003, I2 = 13%; OR for high versus low category: 3.42, 95% CI: 2.31 to 5.07, P < 0.001, I2 = 0%) and VAT (OR for per 1-cm increment: 1.54, 95% CI: 1.16 to 2.06, P = 0.003, I2 = 63%; OR for high versus low category: 5.73, 95% CI: 3.39 to 9.77, P < 0.001, I2 = 31%) at early stages of pregnancy were associated with a higher subsequent risk of GDM. Subgroup analysis based on study design, timing of ultrasound examination, GDM diagnostic criteria, and study quality score showed consistent results. In conclusion, ultrasound-measured abdominal adipose tissue thickness may be useful for predicting the subsequent risk of GDM in pregnant women.

16.
JAMA ; 330(20): 1961-1970, 2023 11 28.
Article En | MEDLINE | ID: mdl-38015220

Importance: There are currently no therapies approved by the US Food and Drug Administration for nasopharyngeal carcinoma (NPC). Gemcitabine-cisplatin is the current standard of care for the first-line treatment of recurrent or metastatic NPC (RM-NPC). Objective: To determine whether toripalimab in combination with gemcitabine-cisplatin will significantly improve progression-free survival and overall survival as first-line treatment for RM-NPC, compared with gemcitabine-cisplatin alone. Design, Setting, and Participants: JUPITER-02 is an international, multicenter, randomized, double-blind phase 3 study conducted in NPC-endemic regions, including mainland China, Taiwan, and Singapore. From November 10, 2018, to October 20, 2019, 289 patients with RM-NPC with no prior systemic chemotherapy in the RM setting were enrolled from 35 participating centers. Interventions: Patients were randomized (1:1) to receive toripalimab (240 mg [n = 146]) or placebo (n = 143) in combination with gemcitabine-cisplatin for up to 6 cycles, followed by maintenance with toripalimab or placebo until disease progression, intolerable toxicity, or completion of 2 years of treatment. Main Outcome: Progression-free survival as assessed by a blinded independent central review. Secondary end points included objective response rate, overall survival, progression-free survival assessed by investigator, duration of response, and safety. Results: Among the 289 patients enrolled (median age, 46 [IQR, 38-53 years; 17% female), at the final progression-free survival analysis, toripalimab treatment had a significantly longer progression-free survival than placebo (median, 21.4 vs 8.2 months; HR, 0.52 [95% CI, 0.37-0.73]). With a median survival follow-up of 36.0 months, a significant improvement in overall survival was identified with toripalimab over placebo (hazard ratio [HR], 0.63 [95% CI, 0.45-0.89]; 2-sided P = .008). The median overall survival was not reached in the toripalimab group, while it was 33.7 months in the placebo group. A consistent effect on overall survival, favoring toripalimab, was found in subgroups with high and low PD-L1 (programmed death-ligand 1) expression. The incidence of all adverse events, grade 3 or greater adverse events, and fatal adverse events were similar between the 2 groups. However, adverse events leading to discontinuation of toripalimab or placebo (11.6% vs 4.9%), immune-related adverse events (54.1% vs 21.7%), and grade 3 or greater immune-related adverse events (9.6% vs 1.4%) were more frequent in the toripalimab group. Conclusions and Relevance: The addition of toripalimab to chemotherapy as first-line treatment for RM-NPC provided statistically significant and clinically meaningful progression-free survival and overall survival benefits compared with chemotherapy alone, with a manageable safety profile. These findings support the use of toripalimab plus gemcitabine-cisplatin as the new standard of care for this patient population. Trial Registration: ClinicalTrials.gov Identifier: NCT03581786.


Antibodies, Monoclonal, Humanized , Antineoplastic Agents , Cisplatin , Gemcitabine , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Adult , Female , Humans , Male , Middle Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Cisplatin/administration & dosage , Cisplatin/adverse effects , Cisplatin/therapeutic use , Double-Blind Method , Gemcitabine/administration & dosage , Gemcitabine/adverse effects , Gemcitabine/therapeutic use , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/secondary , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/secondary , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , United States , Internationality
18.
Geriatr Nurs ; 54: 129-134, 2023.
Article En | MEDLINE | ID: mdl-37782975

The aim of this study was to explore effects of palliative care (PC) on patients with different heart function. Patients with NYHA (New York Heart Association) class II, III, IV were divided into separate groups. The KCCQ (Kansas City Cardiomyopathy Questionnaire) and HADS (Hospital Anxiety and Depression Scale) scores were compared before and 3 months after PC intervention. After 3 months, compared with the control group, PC could further significantly improve the KCCQ, HADS-depression and -anxiety scores of patients in NYHA class IV (P < 0.05); PC could significantly improve the HADS-depression and -anxiety scores of patients with NYHA class III (P < 0.05), and had an improvement tendency on KCCQ score. The study revealed that PC can significantly improve anxiety and depression of patients with NYHA class III or IV, and significantly improve the quality of life of patients with NYHA class IV, but had no effects on patients with NYHA class II.


Heart Failure , Quality of Life , Humans , Palliative Care , Pilot Projects , Anxiety/therapy , Surveys and Questionnaires
19.
Angew Chem Int Ed Engl ; 62(43): e202311896, 2023 10 23.
Article En | MEDLINE | ID: mdl-37671593

Artificial (transfer) hydrogenases have been developed for organic synthesis, but they rely on precious metals. Native hydrogenases use Earth-abundant metals, but these cannot be applied for organic synthesis due, in part, to their substrate specificity. Herein, we report the design and development of manganese transfer hydrogenases based on the biotin-streptavidin technology. By incorporating bio-mimetic Mn(I) complexes into the binding cavity of streptavidin, and through chemo-genetic optimization, we have obtained artificial enzymes that hydrogenate ketones with nearly quantitative yield and up to 98 % enantiomeric excess (ee). These enzymes exhibit broad substrate scope and high functional-group tolerance. According to QM/MM calculations and X-ray crystallography, the S112Y mutation, combined with the appropriate chemical structure of the Mn cofactor plays a critical role in the reactivity and enantioselectivity of the artificial metalloenzyme (ArMs). Our work highlights the potential of ArMs incorporating base-meal cofactors for enantioselective organic synthesis.


Hydrogenase , Metalloproteins , Biotin/chemistry , Streptavidin/chemistry , Hydrogenase/chemistry , Manganese , Metalloproteins/chemistry , Catalysis
20.
Chem Asian J ; 18(20): e202300659, 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37700430

Di- and multinuclear hafnium complexes bridged by ligands have been rarely reported. In this article, a novel 3,5-disubstituted pyrazolate-bridged ligand LH5 with two [N2 N]2- -type chelating side arms was designed and synthesized, which supported a series of dinuclear hafnium complexes. Dinuclear hafnium azides [LHf2 (µ-1,1-N3 )2 (N3 )2 ][Na(THF)4 ] 3 and [LHf2 (µ-1,1-N3 )2 (N3 )2 ][Na(2,2,2-Kryptofix)] 4 were further synthesized and structurally characterized, featuring two sets of terminal and bridging azido ligands like jellyfishes. The reactivity of 3 under reduction conditions was conducted, leading to a formation of a tetranuclear hafnium imido complex [L1 Hf2 (µ1 -NH)(N3 ){µ2 -K}]2 5. DFT calculations revealed that the mixed imido azide 5 was generated via an intramolecular C-H insertion from a putative dinuclear HfIV -nitridyl intermediate.

...