Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Anal Methods ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973656

ABSTRACT

A fluorescent sensor for highly selective and ultrasensitive detection of acetylsalicylic acid (ASA), succinic acid (SA), and ascorbic acid (AA) was reported. The water-soluble fluorescent ligand salicylic acid (Sal) was generated through catalyzing ASA by the hydrolase activity of zeolitic-imidazolate framework-8 (ZIF-8) or natural esterase (Est). The Sal can coordinate with 2-methylimidazole (2-MIm) and Ln(III) to form a fluorescent lanthanide coordination polymer (LCP), which has a fluorescence emission peak with the maximum wavelength at 412 nm (the excitation wavelength at 300 nm). Therefore, the detection of ASA can be achieved through the fluorescence intensity changes of LCPs in the system, which has comparable sensitivity and good selectivity (linear range of 0.031-1.00 mM and LODs of 11.72 and 3.22 µM) as compared to a direct reaction between Est/ZIF-8 and ASA for detecting ASA (linear range of 0.05-1.20 mM and limits of detection (LODs) of 4.43 and 4.58 µM). Furthermore, upon the addition of SA and AA, the fluorescence intensity of the reaction system can be enhanced and weakened through changing the energy resonance transfer pathways and affecting the enzymatic reaction process, respectively, realizing their sensitive and selective fluorescence detection. The established fluorescent sensors can work well in a wide linear range of SA concentrations from 0 to 2.50 mM (Est-based reaction system) and 0 to 1.50 mM (ZIF-8-based reaction system) with the LODs of 0.032 and 0.028 mM, respectively. The linear ranges of AA concentrations are from 0.0078 to 0.25 mM (Est-based reaction system) and 0.0078 to 0.13 mM (ZIF-8-based reaction system) with the LODs of 2.54 and 3.80 µM, respectively. The established sensors were successfully used in the detection of SA in rabbit plasma, with a recovery of 84.0%-98.7%. Additionally, the contents of ASA in Aspirin Enteric-Coated tablets and AA in vitamin C tablets were also determined by the developed methods.

2.
ACS Energy Lett ; 9(5): 2212-2221, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751969

ABSTRACT

Owing to their high-voltage stabilities, halide superionic conductors such as Li3YCl6 recently emerged as promising solid electrolyte (SE) materials for all-solid-state batteries (ASSBs). It has been shown that by either introducing off-stoichiometry in solid-state (SS) synthesis or using a mechanochemical (MC) synthesis method the ionic conductivities of Li3-3xY1+xCl6 can increase up to an order of magnitude. The underlying mechanism, however, is unclear. In the present study, we adopt a hopping frequency analysis method of impedance spectra to reveal the correlations in stoichiometry, crystal structure, synthesis conditions, Li+ carrier concentrations, hopping migration barriers, and ionic conductivity. We show that unlike the conventional Li3YCl6 made by SS synthesis, mobile Li+ carriers in the defect-containing SS-Li3-3xY1+xCl6 (0 < x < 0.17) and MC-Li3-3xY1+xCl6 are generated with an activation energy and their concentration is dependent on temperature. Higher ionic conductivities in these samples arise from a combination of a higher Li+ carrier concentration and lower migration energy barriers. A new off-stoichiometric halide (Li2.61Y1.13Cl6) with the highest ionic conductivity (0.47 mS cm-1) in the series is discovered, which delivers exceptional cycling performance (∼90% capacity retention after 1000 cycles) in ASSB cells equipped with an uncoated high-energy LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode. This work sheds light on the thermal activation process that releases trapped Li+ ions in defect-containing halides and provides guidance for the future development of superionic conductors for all-solid-state batteries.

3.
Anal Chim Acta ; 1309: 342675, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772665

ABSTRACT

BACKGROUND: Elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS) may suffer from matrix effects; those caused by organic matrices cannot be corrected by internal standardization. A new strategy, matrix overcompensation calibration (MOC), was developed to correct such matrix effects. RESULTS: Clear fruit juices were diluted 1:50 in 1 % HNO3 (v/v)- 0.5 % HCl (v/v)- 5 % ethanol (v/v). A standard series was treated likewise to construct an external calibration curve. As, Se, Cd, and Pb in juices were determined by dilute-and-shoot ICP-MS based on this MOC strategy. The results agreed with those obtained by standard addition calibration and microwave-aided digestion; data accuracy was validated by spike-recovery studies. SIGNIFICANCE: Unlike standard addition calibration, a single external calibration curve established by MOC can be applicable to juices of diversified fruit, geographical, and manufacturer origins enhancing productivity.

4.
Article in English | MEDLINE | ID: mdl-38651946

ABSTRACT

Elemental surface segregation in cathode materials is critical for determining the phase and interfacial reaction between the electrode and electrolyte, which consequently affects the electrochemical properties. Single-crystal cathodes of Li1.2Ni0.2Mn0.6O2 and Li1.2Ni0.2Mn0.6O1.95F0.05 with octahedral morphologies of (102)- and (003)-dominated facets have been manifested to show enhanced electrochemical properties. However, the surface structural features of such single crystals have not been investigated. Herein, using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy, we probe the elemental surface segregation characteristics in these single-crystal cathodes. We reveal that Ni surface segregation shows dependence on the crystal facet such that it occurs on crystal facets with a mix of cations and anions but not on the facets with only cations or anions. Furthermore, facet-dependent surface reconstructions are observed, featuring a spinel-like structure at the Ni-rich facet but a rock-salt structure at the facet without Ni segregation. The commonly known Mn reduction appears at the single-crystal surfaces and is more pronounced at the facet without Ni segregation. We further reveal that fluorination leads to stabilization of surface oxygens. This study provides detailed structural and chemical information about the facet-dependent Ni surface segregation and the resulting phase formation in the rather less explored micron-sized octahedral Li1.2Ni0.2Mn0.6O2 and Li1.2Ni0.2Mn0.6O1.95F0.05 single crystals, which is key to further exploration of the electrochemical properties of the cathodes in the form of microsized single crystals.

5.
Molecules ; 29(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474527

ABSTRACT

The high toxicity of arsenic (As) can cause irreversible harm to the environment and human health. In this study, the chlorin e6 (Ce6), which emits fluorescence in the infrared region, was introduced as the luminescence center, and the addition of copper ion (Cu2+) and As(V) provoked a regular change in fluorescence at 652 nm, whereas that of As(III) was 665 nm, which was used to optionally detect Cu2+, arsenic (As(III), and As(V)). The limit of detection (LOD) values were 0.212 µM, 0.089 ppm, and 1.375 ppb for Cu2+, As(III), and As(V), respectively. The developed method can be used to determine Cu2+ and arsenic in water and soil with good sensitivity and selectivity. The 1:1 stoichiometry of Ce6 with Cu2+ was obtained from the Job plot that was developed from UV-visible spectra. The binding constants for Cu2+ and As(V) were established to be 1.248 × 105 M-1 and 2.35 × 1012 M-2, respectively, using B-H (Benesi-Hildebrand) plots. Fluorescence lifetimes, B-H plots, FT-IR, and 1H-NMR were used to postulate the mechanism of Cu2+ fluorescence quenching and As(V) fluorescence restoration and the interactions of the two ions with the Ce6 molecule.


Subject(s)
Arsenic , Chlorophyllides , Porphyrins , Humans , Copper/chemistry , Spectroscopy, Fourier Transform Infrared , Ions , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry
6.
ACS Energy Lett ; 9(3): 1249-1260, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38482182

ABSTRACT

Lithium- and manganese-rich (LMR) layered oxides are promising high-energy cathodes for next-generation lithium-ion batteries, yet their commercialization has been hindered by a number of performance issues. While fluorination has been explored as a mitigating approach, results from polycrystalline-particle-based studies are inconsistent and the mechanism for improvement in some reports remains unclear. In the present study, we develop an in situ fluorination method that leads to fluorinated LMR with no apparent impurities. Using well-defined single-crystal Li1.2Ni0.2Mn0.6O2 (LNMO) as a platform, we show that a high fluorination level leads to decreased oxygen activities, reduced side reactions at high voltages, and a broadly improved cathode performance. Detailed characterization reveals a particle-level Mn3+ concentration gradient from the surface to the bulk of fluorinated-LNMO crystals, ascribed to the formation of a Ni-rich LizNixMn2-xO4-yFy (x > 0.5) spinel phase on the surface and a "spinel-layered" coherent structure in the bulk where domains of a LiNi0.5Mn1.5O4 high-voltage spinel phase are integrated into the native layered framework. This work provides fundamental understanding of the fluorination effect on LMR and key insights for future development of high-energy Mn-based cathodes with an intergrown/composite crystal structure.

7.
Talanta ; 271: 125708, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38295443

ABSTRACT

A Mn decorated zeolitic imidazolate framework-90 (ZIF-90) nanozyme (Mn/ZIF-90) was constructed through an effective and rapid post-synthetic strategy for the first time. The Mn in Mn/ZIF-90 exists in mixed valence states, which is doped to the ZIF-90 through the formation of Mn-O bond. The Zn-N coordination structure of ZIF-90 may change the electronic arrangement of oxygen atoms in the free carbonyl groups (-CHO), allowing the coordination of Mn with O. The prepared Mn/ZIF-90 possesses outstanding oxidase-like activity and remarkable stability. Besides, the catalytic activity of Mn/ZIF-90 can be inhibited in the presence of H2O2. Therefore, using the Mn/ZIF-90-triggered chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) as an amplifier, a versatile enzyme cascade-based colorimetric method for the detection of glucose and choline with good sensitivity and selectivity was developed. The linear ranges for glucose and choline are 6.25-500 µM and 5-1000 µM, respectively. Furthermore, the developed method was applied in the detection of glucose and choline in rabbit plasma samples, and the recoveries are 89.5-107.3 % and 96.0-109.3 %, respectively. In short, the simple and efficient post-synthetic doping method may provide a new thought for the rational designs of enzyme mimics with improved catalytic performance. Moreover, the colorimetric method based on the excellent catalytic activity of Mn/ZIF-90 may be extended to detect other H2O2-generating or consuming molecules and evaluate the activity of bio-enzymes that can catalyze the generation of glucose or choline.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Nanostructures , Zeolites , Rabbits , Animals , Oxidoreductases/chemistry , Glucose , Zeolites/chemistry , Colorimetry/methods , Hydrogen Peroxide , Choline
8.
Anal Bioanal Chem ; 416(3): 839-847, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38059990

ABSTRACT

Analysis of V, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Ba, and Pb in fruit juices was performed by inductively coupled plasma mass spectrometry (ICPMS) after simple 50-fold dilution in 1% (v/v) HNO3-0.5% (v/v) HCl-5% (v/v) ethanol. Ethanol was added to overwhelm native organic components and dominate matrix effects. A universal calibration curve was built based on a likewise treated reagent standard series. This new matrix overcompensation calibration (MOC) strategy was developed to effectively compensated for matrix effects of carbon origin and achieved quantitative (92.5-118.8%) recoveries comparable to those by standard addition calibration (92.1-117.8%) and microwave-aided digestion (99.3-116.8%). The LODs were 0.528, 0.204, 0.195, and 2.07 ng mL-1 for toxic elements As, Cd, Pb, and Ni, respectively, adequate for their regulatory monitoring. Ge, Rh, Tb, and Ir were used as internal standards. MOC renders a calibration curve universally applicable to any clear fruit juices of diversified crop, geographic, and manufacturer origins resulting in cost saving and enhanced productivity.

9.
ACS Appl Mater Interfaces ; 15(50): 58367-58376, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38079499

ABSTRACT

Halide solid electrolytes (SEs) have been highlighted for their high-voltage stability. Among the halide SEs, the ionic conductivity has been improved by aliovalent metal substitutions or choosing a ccp-like anion-arranged monoclinic structure (C2/m) over hcp- or bcc-like anion-arranged structures. Here, we present a new approach, hard-base substitution, and its underlying mechanism to increase the ionic conductivity of halide SEs. The oxygen substitution to Li2ZrCl6 (trigonal, hcp) increased the ionic conductivity from 0.33 to 1.3 mS cm-1 at Li3.1ZrCl4.9O1.1 (monoclinic, ccp), while the sulfur and fluorine substitutions were not effective. A systematic comparison study revealed that the energetic stabilization of interstitial sites for Li migration plays a key role in improving the ionic conductivity, and the ccp-like anion sublattice is not sufficient to achieve high ionic conductivity. We further examined the feasibility of the oxyhalide SE for practical and all-solid-state battery applications.

10.
Nat Commun ; 14(1): 7448, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978171

ABSTRACT

Chemical short-range-order has been widely noticed to dictate the electrochemical properties of Li-excess cation-disordered rocksalt oxides, a class of cathode based on earth abundant elements for next-generation high-energy-density batteries. Existence of short-range-order is normally evidenced by a diffused intensity pattern in reciprocal space, however, derivation of local atomic arrangements of short-range-order in real space is hardly possible. Here, by a combination of aberration-corrected scanning transmission electron microscopy, electron diffraction, and cluster-expansion Monte Carlo simulations, we reveal the short-range-order is a convolution of three basic types: tetrahedron, octahedron, and cube. We discover that short-range-order directly correlates with Li percolation channels, which correspondingly affects Li transport behavior. We further demonstrate that short-range-order can be effectively manipulated by anion doping or post-synthesis thermal treatment, creating new avenues for tailoring the electrochemical properties. Our results provide fundamental insights for decoding the complex relationship between local chemical ordering and properties of crystalline compounds.

11.
Biosensors (Basel) ; 13(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37998134

ABSTRACT

In this work, dopamine (DA) was polymerized on the surface of CuO nanoparticles (CuO NPs) to form a molecularly imprinted polymer (MIP@PDA/CuO NPs) for the colorimetric detection of astragaloside-IV (AS-IV). The synthesis process of MIP is simple and easy to operate, without adding other monomers or initiators. CuO NPs has high peroxidase (POD)-like activity that can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate oxidized TMB (OxTMB) in the presence of H2O2, having a maximum ultraviolet-visible (UV-Vis) absorption peak at 652 nm. The AS-IV can specifically bind to the surface imprinted cavities and prevent the entry of TMB and H2O2, which will lead to the inhibition of the catalytic reaction. Therefore, a new approach based on the POD-like activity of MIP@PDA/CuO NPs for AS-IV detection was developed with a linear range from 0.000341 to 1.024 mg/mL. The LOD and LOQ are 0.000991 and 0.000341 mg/mL, respectively. The developed method can accurately determine AS-IV in Huangqi Granules and different batches of Ganweikang Tablets, which are similar to the results measured by HPLC-ELSD and meet the requirements of Chinese Pharmacopoeia (2020 edition) for the amount of AS-IV in Huangqi Granules. The combination of MIP with CuO NPs not only endows the detection of AS-IV with high selectivity and reliability, but also expands the application of nanozymes in the detection of small-molecule compounds that have weak UV absorption, and do not have reducibility or oxidation properties.


Subject(s)
Hydrogen Peroxide , Nanoparticles , Reproducibility of Results , Peroxidase
12.
Anal Chim Acta ; 1279: 341771, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827670

ABSTRACT

BACKGROUND: With the development of nanotechnology, various nanomaterials with enzyme-like activity (nanozymes) have been reported. Due to their superior properties, nanozymes have shown important application potential in the fields of bioanalysis, disease detection, and environmental remediation. However, only a few nanomaterials with multi-enzyme mimicry activity have been reported. In this study, a novel multienzyme mimic was synthesized through a simple and rapid preparation protocol by coordinating copper ions with N3, N6 (amino), N7, and N9 on adenine phosphate. RESULTS: The prepared adenine phosphate-Cu complex exhibits significant peroxidase, laccase, and oxidase mimicking activities. The Michaelis-Menten constant (Km) and the maximal velocity (Vmax) values of the peroxidase, laccase, and oxidase mimicking activities of AP-Cu nanozyme are 0.052 mM, 0.14 mM, and 2.49 mM; and 0.552 µM min-1, 6.70 µM min-1, and 2.24 µM min-1, respectively. Then, based on its laccase mimicking activity, the nanozyme was applied in the degradation of phenolic compounds. The calculated kinetic constant for the degradation of 2,4-dichlorophenol is 0.468 min-1 and the degradation efficiency of 2,4-dichlorophenol (0.1 mM) reaches 96.14% at 7 min. Finally, based on the multienzyme mimicking activity of adenine phosphate-Cu nanozyme, simple colorimetric sensing methods with high sensitivity and good selectivity were developed for the detection of hydrogen peroxide, epinephrine, and glutathione in the ranges of 20.0-200.0 µM (R2 = 0.9951), 5.0-100.0 µM (R2 = 0.9970), and 5.0-200.0 µM (R2 = 0.9924) with the limits of quantitation of 20.0 µM, 5.0 µM, and 5.0 µM, respectively. SIGNIFICANCE: In short, the synthesis of nanozymes with multi-enzyme mimicry activity through coordination between copper ions and small molecule mimicry enzymes provides new ideas for the design and research of multi-enzyme mimics.


Subject(s)
Hydrogen Peroxide , Phosphates , Copper , Laccase , Epinephrine , Glutathione , Peroxidase , Peroxidases , Adenine , Colorimetry , Coloring Agents , Phenols
13.
Sensors (Basel) ; 23(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836965

ABSTRACT

Phenolic compounds are one of the main organic pollutants in the environment that can seriously affect ecosystems, even at very low concentrations. Due to the resistance of phenolic compounds to microorganisms, conventional biological treatment methods face challenges in effectively addressing this pollution problem. In this study, a novel laccase mimic (Tris-Cu nanozyme) is prepared using a simple and rapid synthesis strategy based on the coordination of copper ions and amino groups in Tris(hydroxymethyl)aminomethane (Tris). It is found that the Tris-Cu nanozyme exhibits good catalytic activity against a variety of phenolic compounds, the Km, Vmax and Kcat are determined to be 0.18 mM, 15.62 µM·min-1 and 1.57 × 107 min-1 using 2,4-dichlorophenol (2,4-DP) as the substrate, respectively. Then, based on the laccase-like activity of the Tris-Cu nanozyme, a novel colorimetric method for 2,4-DP (the limit of detection (LOD) = 2.4 µM, S/N = 3) detection in the range of 10-400 µM was established, and its accuracy was verified by analyzing tap and lake water samples. In addition, the Tris-Cu nanozyme shows excellent removal abilities for six phenolic compounds in experiments. The removal percentages for 2,4-DP, 2-chlorophenol (2-CP), phenol, resorcinol, 2,6-dimethoxyphenol (2,6-DOP), and bisphenol A (BPA) are 100%, 100%, 100%, 100%, 87%, and 81% at 1 h, respectively. In the simulated effluent, the Tris-Cu nanozyme maintains its efficient catalytic activity towards 2,4-DP, with a degradation percentage of 76.36% at 7 min and a reaction rate constant (k0) of 0.2304 min-1. Therefore, this metal-organic complex shows promise for applications in the monitoring and degrading of environmental pollutants.


Subject(s)
Coordination Complexes , Laccase , Laccase/chemistry , Copper/chemistry , Ecosystem , Phenols , Colorimetry/methods
14.
J Pharm Biomed Anal ; 236: 115695, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37672902

ABSTRACT

Nanomaterials with enzyme-like activity have been widely used in the construction of colorimetric and fluorescence sensors due to their advantages of cost-effectiveness, high stability, good biocompatibility, and ease of modification. Furthermore, the colorimetric and fluorescence sensors, which are effective approaches for detecting bioactive small-molecule compounds, have been extensively explored due to their simple operation and high sensitivity. Recent significant researches have focused on designing various sensors based on nanozymes with peroxidase- and oxidase-like activity for the colorimetric and fluorescence analysis of different analytes. In this review, recent developments (from 2018 to present) in the colorimetric and fluorescent analysis of bioactive small-molecule compounds based on the enzyme-like activity of nanomaterials were summarized. In addition, the challenges and design strategies in developing colorimetric and fluorescent assays with high performance and specific sensing were discussed.


Subject(s)
Colorimetry , Nanostructures , Peroxidases , Coloring Agents
15.
Nanoscale Adv ; 5(18): 4950-4967, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37705801

ABSTRACT

The combined application of nanozymes and natural enzymes has received widespread attention in recent years. In this work, a simple and efficient method was used to synthesize a composite material of CuO nanoparticle-modified zeolitic imidazolate framework-8 (CuO NPs@ZIF-8) with multiple enzyme activities (glucose oxidase-like and hydrolase-like activities) to detect the activity of natural enzymes through fluorescence and colorimetric (UV-vis) dual-mode detection. The hydrolase- and oxidase-like activities of CuO NPs@ZIF-8 show an acceptable affinity with l-ascorbic acid 2-phosphate trisodium (AAP) and o-phenylenediamine (OPD). Using the developed sensor, highly sensitive detection of natural enzymes glucose oxidase (GOX) and alkaline phosphatase (ALP) was achieved through both fluorescent and colorimetric analyses with a wide linear range (fluorescence for GOX: 0.86-1.23 × 105 mU mL-1, UV-vis for GOX: 0.081-1.62 × 105 mU mL-1; fluorescence for ALP: 0.042-1.20 × 104 mU mL-1, UV-vis for ALP: 0.0046-1.23 × 104 mU mL-1) and low LOQs (fluorescence for GOX: 0.86 mU mL-1, UV-vis for GOX: 0.081 mU mL-1; fluorescence for ALP: 0.042 mU mL-1, UV-vis for ALP: 0.0046 mU mL-1). Compared to the other fluorescent and colorimetric sensors, this sensor has better catalytic activity due to the addition of GOX and ALP, which can amplify the detection signal and improve the sensitivity. This is the first time that composite material CuO NPs@ZIF-8 with "tandem enzyme" activity was synthesized and applied in the detection of enzyme activity. Additionally, the proposed fluorescent and UV-vis platforms exhibit the capability to detect GOX and ALP in serum samples with satisfactory recovery, indicating potential application prospects in biochemical analysis.

16.
Dis Model Mech ; 16(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37718909

ABSTRACT

Sezary syndrome (SS) is a rare, aggressive leukemic variant of cutaneous T-cell lymphoma (CTCL) that lacks adequate therapeutic options and representative small-animal models. Here, we demonstrate that IL-15 is a critical CTCL growth factor. Importantly, an immunodeficient knock-in mouse model genetically engineered to express human IL-15 uniquely supported the growth of SS patient samples relative to conventional immunodeficient mouse strains. SS patient-derived xenograft (PDX) models recapacitated key pathological features of the human disease, including skin infiltration and spread of leukemic cells to the periphery, and maintained the dependence on human IL-15 upon serial in vivo passaging. Detailed molecular characterization of the engrafted cells by single-cell transcriptomic analysis revealed congruent neoplastic gene expression signatures but distinct clonal engraftment patterns. Overall, we document an important dependence of Sezary cell survival and proliferation on IL-15 signaling and the utility of immunodeficient humanized IL-15 mice as hosts for SS - and potentially other T and NK cell-derived hematologic malignancies - PDX model generation. Furthermore, these studies advocate the thorough molecular understanding of the resultant PDX models to maximize their translational impact.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Sezary Syndrome , Skin Neoplasms , Humans , Animals , Mice , Skin Neoplasms/metabolism , Interleukin-15 , Lymphoma, T-Cell, Cutaneous/pathology , Sezary Syndrome/metabolism , Sezary Syndrome/pathology , Lymphocytes/metabolism , Tumor Microenvironment
17.
Molecules ; 28(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37513303

ABSTRACT

A biomimetic mineralization method was used in the facile and rapid preparation of nanoflowers for immobilizing alcohol dehydrogenase (ADH). The method mainly uses ADH as an organic component and zinc phosphate as an inorganic component to prepare flower-like ADH/Zn3(PO4)2 organic-inorganic hybrid nanoflowers (HNFs) with the high specific surface area through a self-assembly process. The synthesis conditions of the ADH HNFs were optimized and its morphology was characterized. Under the optimum enzymatic reaction conditions, the Michaelis-Menten constant (Km) of ADH HNFs (ß-NAD+ as substrate) was measured to be 3.54 mM, and the half-maximal inhibitory concentration (IC50) of the positive control ranitidine (0.2-0.8 mM) was determined to be 0.49 mM. Subsequently, the inhibitory activity of natural medicine Penthorum chinense Pursh and nine small-molecule compounds on ADH was evaluated using ADH HNFs. The inhibition percentage of the aqueous extract of P. chinense is 57.9%. The vanillic acid, protocatechuic acid, gallic acid, and naringenin have obvious inhibitory effects on ADH, and their percentages of inhibition are 55.1%, 68.3%, 61.9%, and 75.5%, respectively. Moreover, molecular docking analysis was applied to explore the binding modes and sites of the four most active small-molecule compounds to ADH. The results of this study can broaden the application of immobilized enzymes through biomimetic mineralization, and provide a reference for the discovery of ADH inhibitors from natural products.


Subject(s)
Alcohol Dehydrogenase , Nanostructures , Nanostructures/chemistry , Biomimetics , Molecular Docking Simulation
18.
Molecules ; 28(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37513444

ABSTRACT

A core-shell-derived structural magnetic zeolite imidazolate framework-67 (Fe3O4-COOH@ZIF-67) nanocomposite was fabricated through a single-step coating of zeolite imidazolate framework-67 on glutaric anhydride-functionalized Fe3O4 nanosphere for the magnetic solid-phase extraction (MSPE) of theophylline (TP). The Fe3O4-COOH@ZIF-67 nanocomposite was characterized through scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, Zeta potential analysis, X-ray diffraction, Brunauer-Emmett-Teller, and vibrating sample magnetometer. The material has a high specific surface area and good magnetism, which maintains the regular dodecahedron structure of ZIF-67 without being destroyed by the addition of Fe3O4-COOH nanospheres. The Fe3O4-COOH@ZIF-67 can rapidly adsorb TP mainly through the strong coordination interaction between undercoordinated Co2+ on ZIF-67 and -NH from imidazole of TP. The adsorption and desorption conditions, such as the amount of adsorbent, adsorption time, pH value, and elution solvent, were optimized. The kinetics of TP adsorption on Fe3O4-COOH@ZIF-67 was found to follow pseudo-second-order kinetics. The Langmuir model fits the adsorption data well and the maximum adsorption capacity is 1764 mg/g. Finally, the developed MSPE-HPLC method was applied in the enrichment and analysis of TP in four tea samples and rabbit plasma. TP was not detected in oolong tea and rabbit plasma, and its contents in jasmine tea, black tea, and green tea are 5.80, 4.31, and 1.53 µg/g, respectively. The recoveries of spiked samples are between 74.41% and 86.07% with RSD in the range of 0.81-3.83%. The adsorption performance of Fe3O4-COOH@ZIF-67 nanocomposite was nearly unchanged after being stored at room temperature for at least 80 days and two consecutive adsorption-desorption cycles. The results demonstrate that Fe3O4-COOH@ZIF-67 nanocomposite is a promising magnetic adsorbent for the preconcentration of TP in complex samples.

19.
Sci Transl Med ; 15(702): eadd1175, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37379368

ABSTRACT

Notch signaling promotes T cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like Notch ligand DLL4. To assess whether Notch's effects are evolutionarily conserved and to identify the mechanisms of Notch signaling inhibition, we studied antibody-mediated DLL4 blockade in a nonhuman primate (NHP) model similar to human allo-HCT. Short-term DLL4 blockade improved posttransplant survival with durable protection from gastrointestinal GVHD in particular. Unlike prior immunosuppressive strategies tested in the NHP GVHD model, anti-DLL4 interfered with a T cell transcriptional program associated with intestinal infiltration. In cross-species investigations, Notch inhibition decreased surface abundance of the gut-homing integrin α4ß7 in conventional T cells while preserving α4ß7 in regulatory T cells, with findings suggesting increased ß1 competition for α4 binding in conventional T cells. Secondary lymphoid organ fibroblastic reticular cells emerged as the critical cellular source of Delta-like Notch ligands for Notch-mediated up-regulation of α4ß7 integrin in T cells after allo-HCT. Together, DLL4-Notch blockade decreased effector T cell infiltration into the gut, with increased regulatory to conventional T cell ratios early after allo-HCT. Our results identify a conserved, biologically unique, and targetable role of DLL4-Notch signaling in intestinal GVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Humans , Animals , Transplantation, Homologous , Receptors, Notch/metabolism , Signal Transduction , Graft vs Host Disease/metabolism , Primates
20.
Curr Microbiol ; 80(5): 171, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024713

ABSTRACT

Dengue remains a public health issue worldwide. Similar to chronic infectious diseases, stimulation of cytokine production is not enough to drive immune effector cells for effective virus clearance. One possible mechanism is the virus induces a large number of negative stimulatory cytokines inhibiting immune response. Interleukin 37 (IL-37) plays a crucial regulatory role in infection and immunity, inhibits innate and adaptive immunity as an anti-inflammatory cytokine by inhibiting proinflammatory mediators and pathways. To date, there are few studies reporting correlations between dengue fever (DF) and IL-37. In this study we found that the serum IL-37b and IL-37b-producing monocytes in patients were significantly increased in DF patients. A majority of the IL-37b produced by DF patients was produced by monocytes, not lymphocytes. Increased levels of IL-6, IL-10, and IFN-α were also found in DF patients. However, we failed to detect IL-1ß, IL-17A and TNF-α in plasma, because of off-target. In our study, there was no relation between IL-6, IL-10, and IFN-α expressions and IL-37b in serum (P > 0.05). The IL-37b-producing monocytes were negatively correlated with the level of IFN-α in serum and platelet count, and positively correlated with lymphocytes percentage (P < 0.05, respectively). Additionally, serum DENV nonstructural protein 1 levels were positively correlated with monocytes percentages (P < 0.05). Our data represents findings for IL-37b expression and its potential mechanisms in DF patients' immune response.


Subject(s)
Dengue Virus , Dengue , Humans , Interleukin-10 , Dengue Virus/physiology , Interleukin-6 , Viral Load , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL
...