Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(7): 107033, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37389180

ABSTRACT

Endosymbiosis with chemosynthetic Gammaproteobacteria is widely recognized as an adaptive mechanism of siboglinid tubeworms, yet evolution of these endosymbionts and their driving forces remain elusive. Here, we report a finished endosymbiont genome (HMS1) of the cold-seep tubeworm Sclerolinum annulatum. The HMS1 genome is small in size, with abundant prophages and transposable elements but lacking gene sets coding for denitrification, hydrogen oxidization, oxidative phosphorylation, vitamin biosynthesis, cell pH and/or sodium homeostasis, environmental sensing, and motility, indicative of early genome erosion and adaptive evolution toward obligate endosymbiosis. Unexpectedly, a prophage embedded in the HMS1 genome undergoes lytic cycle. Highly expressed ROS scavenger and LexA repressor genes indicate that the tubeworm host likely activates the lysogenic phage into lytic cycle through the SOS response to regulate endosymbiont population and harvest nutrients. Our findings indicate progressive evolution of Sclerolinum endosymbionts toward obligate endosymbiosis and expand the knowledge about phage-symbiont-host interaction in deep-sea tubeworms.

2.
Front Microbiol ; 14: 1078171, 2023.
Article in English | MEDLINE | ID: mdl-36846759

ABSTRACT

Sponges are widely distributed in the global ocean and harbor diverse symbiotic microbes with mutualistic relationships. However, sponge symbionts in the deep sea remain poorly studied at the genome level. Here, we report a new glass sponge species of the genus Bathydorus and provide a genome-centric view of its microbiome. We obtained 14 high-quality prokaryotic metagenome-assembled genomes (MAGs) affiliated with the phyla Nitrososphaerota, Pseudomonadota, Nitrospirota, Bdellovibrionota, SAR324, Bacteroidota, and Patescibacteria. In total, 13 of these MAGs probably represent new species, suggesting the high novelty of the deep-sea glass sponge microbiome. An ammonia-oxidizing Nitrososphaerota MAG B01, which accounted for up to 70% of the metagenome reads, dominated the sponge microbiomes. The B01 genome had a highly complex CRISPR array, which likely represents an advantageous evolution toward a symbiotic lifestyle and forceful ability to defend against phages. A sulfur-oxidizing Gammaproteobacteria species was the second most dominant symbiont, and a nitrite-oxidizing Nitrospirota species could also be detected, but with lower relative abundance. Bdellovibrio species represented by two MAGs, B11 and B12, were first reported as potential predatory symbionts in deep-sea glass sponges and have undergone dramatic genome reduction. Comprehensive functional analysis indicated that most of the sponge symbionts encoded CRISPR-Cas systems and eukaryotic-like proteins for symbiotic interactions with the host. Metabolic reconstruction further illustrated their essential roles in carbon, nitrogen, and sulfur cycles. In addition, diverse putative phages were identified from the sponge metagenomes. Our study expands the knowledge of microbial diversity, evolutionary adaption, and metabolic complementarity in deep-sea glass sponges.

3.
Front Microbiol ; 13: 861795, 2022.
Article in English | MEDLINE | ID: mdl-35694283

ABSTRACT

The deep-sea hydrothermal vents (DSHVs) in the Southwest Indian Ridge (SWIR) are formed by specific geological settings. However, the community structure and ecological function of the microbial inhabitants on the sulfide chimneys of active hydrothermal vents remain largely unknown. In this study, our analyses of 16S rRNA gene amplicons and 16S rRNA metagenomic reads showed the dominance of sulfur-oxidizing Ectothiorhodospiraceae, Thiomicrorhabdus, Sulfurimonas, and Sulfurovum on the wall of two active hydrothermal chimneys. Compared with the inactive hydrothermal sediments of SWIR, the active hydrothermal chimneys lacked sulfur-reducing bacteria. The metabolic potentials of the retrieved 82 metagenome-assembled genomes (MAGs) suggest that sulfur oxidation might be conducted by Thiohalomonadales (classified as Ectothiorhodospiraceae based on 16S rRNA gene amplicons), Sulfurovaceae, Hyphomicrobiaceae, Thiotrichaceae, Thiomicrospiraceae, and Rhodobacteraceae. For CO2 fixation, the Calvin-Benson-Bassham and reductive TCA pathways were employed by these bacteria. In Thiohalomonadales MAGs, we revealed putative phytochrome, carotenoid precursor, and squalene synthesis pathways, indicating a possible capacity of Thiohalomonadales in adaptation to dynamics redox conditions and the utilization of red light from the hot hydrothermal chimneys for photolithotrophic growth. This study, therefore, reveals unique microbiomes and their genomic features in the active hydrothermal chimneys of SWIR, which casts light on ecosystem establishment and development in hydrothermal fields and the deep biosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...