Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(25): 14152-14164, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869049

ABSTRACT

Golden apple snail (Pomacea canaliculata), a major alien invasive organism in China, affects food production and poses a threat to human health. Metaldehyde is a highly effective, commonly used snail killer with low toxicity. Virulence determination, tissue section, iTRAQ and RNA interference were used to systematically study the toxicity of metaldehyde on P. canaliculata. The molluscicidal activity tests showed that metaldehyde exhibits strong toxicity against P. canaliculata. Physiological and biochemical data indicate that metaldehyde can cause damage to the gills, liver, pancreas, and kidneys of snails, also reduce the oxygen consumption rate and ammonia excretion rate of golden apple snails, and cause neurological diseases. The proteome of the gill region of the golden apple snail after exposure to metaldehyde was analyzed by using iTRAQ technology. A total of 360 differential proteins were identified, and four target proteins were screened, namely, alpha-protein kinase 1 (ALPK1), cubilin (CUBN), sodium- and chloride-dependent GABA transporter 2 (GAT2), and acetylcholinesterase (AChE). RNAi was used to target the four proteins. After the ALPK1 and CUBN protein genes were interfered with by metaldehyde treatment, it was found that the mortality rate of the golden apple snail significantly increased. However, interference of GAT2 and AChE protein genes by metaldehyde led to no significant change in the mortality rates of the snails. The histopathological observation of the gill showed that the rate of cilia shedding in the gill decreased after the interference of ALPK1 and CUBN protein genes.


Subject(s)
Molluscacides , Snails , Animals , Snails/genetics , Snails/metabolism , Molluscacides/metabolism , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Acetaldehyde/toxicity , Gills/metabolism , Gills/drug effects , Acetylcholinesterase/metabolism , Acetylcholinesterase/genetics , China
2.
Pest Manag Sci ; 80(7): 3650-3664, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38456499

ABSTRACT

BACKGROUND: Metaldehyde is a molluscicide commonly used to control Pomacea canaliculate. Its efficacy is significantly impacted by water temperature, although the underlying mechanisms have not been fully explored. RESULTS: In this study, we systematically investigated the temperature effect and molecular mechanisms of metaldehyde on P. canaliculata. The molluscicidal effect at various temperatures indicated that metaldehyde's molluscicidal activity significantly decreases with a drop in temperature. The LC50 value was only 458.8176 mg/L at 10 °C, while it surged to a high of 0.8249 mg/L at 25 °C. The impact of low temperature (10 °C) on metaldehyde's molluscicidal activity was analyzed via transcriptomics. The results revealed that the effect of low temperature primarily influences immunity, lipid synthesis, and oxidative stress. The expression of stress and immune-related genes, such as MANF, HSP70, Cldf7, HSP60, and PclaieFc, significantly increased. Furthermore, we studied the function of five target genes using RNA interference (RNAi) and discovered that Cldf7 and HSP70 could notably affect metaldehyde's molluscicidal effect. The mortality of P. canaliculata increased by 36.17% (72 h) after Cldf7 interference and by 48.90% (72 h) after HSP70 interference. CONCLUSION: Our findings demonstrate that low temperature can induce the extensive expression of the Cldf7 and HSP70 genes, resulting in a substantial reduction in metaldehyde's molluscicidal activity. © 2024 Society of Chemical Industry.


Subject(s)
Cold Temperature , Molluscacides , Animals , Molluscacides/pharmacology , Gastropoda/drug effects , Gastropoda/genetics , Acetaldehyde/analogs & derivatives , Acetaldehyde/pharmacology
3.
Article in English | MEDLINE | ID: mdl-38100336

ABSTRACT

With the rapid advancements of big data and computer vision, many large-scale natural visual datasets are proposed, such as ImageNet-21K, LAION-400M, and LAION-2B. These large-scale datasets significantly improve the robustness and accuracy of models in the natural vision domain. However, the field of medical images continues to face limitations due to relatively small-scale datasets. In this paper, we propose a novel method to enhance medical image analysis across domains by leveraging pre-trained models on large natural datasets. Specifically, a Cross-Domain Transfer Module (CDTM) is proposed to transfer natural vision domain features to the medical image domain, facilitating efficient fine-tuning of models pre-trained on large datasets. In addition, we design a Staged Fine-Tuning (SFT) strategy in conjunction with CDTM to further improve the model performance. Experimental results demonstrate that our method achieves state-of-the-art performance on multiple medical image datasets through efficient fine-tuning of models pre-trained on large natural datasets. The code is available at https://github.com/qklee-lz/CDTM.

4.
Front Plant Sci ; 14: 1176300, 2023.
Article in English | MEDLINE | ID: mdl-37546271

ABSTRACT

Introduction: Insect pests from the family Papilionidae (IPPs) are a seasonal threat to citrus orchards, causing damage to young leaves, affecting canopy formation and fruiting. Existing pest detection models used by orchard plant protection equipment lack a balance between inference speed and accuracy. Methods: To address this issue, we propose an adaptive spatial feature fusion and lightweight detection model for IPPs, called ASFL-YOLOX. Our model includes several optimizations, such as the use of the Tanh-Softplus activation function, integration of the efficient channel attention mechanism, adoption of the adaptive spatial feature fusion module, and implementation of the soft Dlou non-maximum suppression algorithm. We also propose a structured pruning curation technique to eliminate unnecessary connections and network parameters. Results: Experimental results demonstrate that ASFL-YOLOX outperforms previous models in terms of inference speed and accuracy. Our model shows an increase in inference speed by 29 FPS compared to YOLOv7-x, a higher mAP of approximately 10% than YOLOv7-tiny, and a faster inference frame rate on embedded platforms compared to SSD300 and Faster R-CNN. We compressed the model parameters of ASFL-YOLOX by 88.97%, reducing the number of floating point operations per second from 141.90G to 30.87G while achieving an mAP higher than 95%. Discussion: Our model can accurately and quickly detect fruit tree pest stress in unstructured orchards and is suitable for transplantation to embedded systems. This can provide technical support for pest identification and localization systems for orchard plant protection equipment.

5.
Ecotoxicol Environ Saf ; 259: 115064, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37229873

ABSTRACT

Pomacea canaliculata is a malignant invasive aquatic snail found worldwide, and niclosamide (NS) is one of the primary agents used for its control. NS applied to water will exist in non-lethal concentrations for some time due to degradation or water exchange, thus resulting in sublethal effects on environmental organisms. To identify sublethal effects of NS on Pomacea canaliculata, we studied the aspects of histopathology, oxygen-nitrogen ratio (RO∶N), enzyme activity determination, and gene expression. After LC30 NS treatment (0.310 g/L), many muscle fibers of the feet degenerated and some acinar vesicles of the hepatopancreas collapsed and dissolved. The oxygen-nitrogen ratio (RO∶N) decreased significantly from 15.0494 to 11.5183, indicating that NS had changed the metabolic mode of Pomacea canaliculata and shifted it primarily to protein catabolism. Transcriptome analysis identified the sublethal effects of LC30 NS on the snails at the transcriptional level. 386, 322, and 583 differentially expressed genes (DEGs) were identified in the hepatopancreas, gills, and feet, respectively. GO (Gene Ontology) functional analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotations showed that DEGs in the hepatopancreas were mainly enriched for sugar metabolism, protein biosynthesis, immune response, and amino acid metabolism functional categories; DEGs in the gills were mainly enriched for ion transport and amino acid metabolism; DEGs in the feet were mainly enriched for transmembrane transport and inositol biosynthesis. In the future, we will perform functional validation of key genes to further explain the molecular mechanism of sublethal effects.


Subject(s)
Food , Niclosamide , Animals , Niclosamide/toxicity , Carbohydrate Metabolism , Water , Amino Acids
6.
Plant Dis ; 107(10): 3248-3258, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37005505

ABSTRACT

Pseudomonas syringae pv. actinidiae causes kiwifruit bacterial canker and poses a major threat to the kiwifruit industry. This study aimed to investigate the genetic characteristics of the P. syringae pv. actinidiae population from kiwifruit in Sichuan, China. Sixty-seven isolates obtained from diseased plants were characterized using morphological features, multiplex-PCR, and multilocus sequence analysis (MLSA). The isolates exhibited the typical colony morphology of P. syringae pv. actinidiae. Multiplex PCR amplification identified every isolate as P. syringae pv. actinidiae biovar 3. MLSA of the three housekeeping genes gapA, gyrB, and pfk, revealed that the reference strains of the five described biovars were clearly distinguished by a combined phylogenetic tree, and all of the tested isolates clustered with the reference strains of P. syringae pv. actinidiae biovar 3. Through a phylogenetic tree constructed from a single gene, it was found that pkf gene alone could distinguish biovar 3 from the other biovars. Furthermore, all P. syringae pv. actinidiae isolates analyzed by BOX-A1R-based repetitive extragenic palindromic (BOX)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR clustered into four groups. The clustering results of BOX- and ERIC-PCR indicated that group III had the largest number of isolates, accounting for 56.72 and 61.19% of all 67 isolates, respectively, and the two characterization methods were similar and complementary. The results of this study revealed that the genomes of P. syringae pv. actinidiae isolates from Sichuan had rich genetic diversity but no obvious correlation was found between clustering and geographical region. This research provides novel methodologies for rapidly detecting kiwifruit bacterial canker pathogen and a molecular differentiation at genetic level of P. syringae pv. actinidiae biovar diversity in China.


Subject(s)
Actinidia , Pseudomonas syringae , Phylogeny , Plant Diseases/microbiology , Multilocus Sequence Typing , Actinidia/microbiology , China
7.
Pestic Biochem Physiol ; 192: 105424, 2023 May.
Article in English | MEDLINE | ID: mdl-37105626

ABSTRACT

Virtual screening is an efficient way to obtain new drugs, which has become an important method in the field of pesticide research. Protein neural wiskott-Aldrich syndrome isoform X1 (PcnWAS) is a target protein that exists in the haemocytes of Pomacea canaliculata, and in this study, isothermal titration calorimetry (ITC) was used to evaluate the binding ability of protein PcnWAS and pedunsaponin A in vitro. Furthermore, it was set as a receptor, and the design of molluscicidal compounds based on protein PcnWAS was carried out. Results showed that, pedunsaponin A had high binding capacity with protein PcnWAS, and the binding constant (Ka) was 2.98 ± 1.74 × 10-4. A new potential molluscicidal compound thionicotinamide-adenine-dinucleotide (thionicotinamide-DPN) was obtained by virtual screening. In-vivo bioassay indicated that, the LC50 value was 57.7102 mg/L (72 h), and the oxygen consumption rate, ammonia excretion rate, oxygen nitrogen ratio and hemocyanin content of P. canaliculata declined after 60 mg/L thionicotinamide-DPN treated. Furthermore, the treatment of thionicotinamide-DPN also decreased gene expression level of protein PcnWAS. The results of ITC test showed that thionicotinamide-DPN can bind with protein PcnWAS efficiently, which means that it has the same target with pedunsaponin A when interacted with P. canaliculata. All the above results lay a foundation for the development of new molluscicides.


Subject(s)
Molluscacides , Saponins , Triterpenes , Animals , Snails , Molluscacides/pharmacology , Proteins
8.
Molecules ; 28(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049765

ABSTRACT

Allylation of N-unsubstituted isatin N,N'-cyclic azomethine imines with Morita-Baylis-Hillman carbonates in the presence of 1-10 mol% DABCO in DCM at room temperature, rapidly gave N-allylated and N, ß-diallylated isatin N,N'-cyclic azomethine imine 1,3-dipoles in moderate to high yields. The reaction features mild reaction conditions, easily practical operation, and short reaction times in most cases. Furthermore, the alkylated products were transformed into novel bicyclic spiropyrrolidine oxoindole derivatives through the [3+2] or [3+3]-cycloaddition with maleimides or Knoevenagel adducts.

9.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770700

ABSTRACT

The synthesis of dicyclic spiropyridazine oxoindole derivatives by using [3+3]-cycloaddition of N-unsubstituted isatin N,N'-cyclic azomethine imine 1,3-dipoles was reported. The products bearing two consecutive stereocenters, including spiroquaternary stereocenters in one ring structure, can be effectively obtained in moderate to excellent yields (20-93%) and low to moderate diastereoselectivities (1:9-10:1 dr). The synthesized compounds (>35 examples) were characterized by single-crystal XRD, FTIR, NMR, and mass spectral analysis.

10.
J Agric Food Chem ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36752052

ABSTRACT

In modern pesticide discovery, target-based drug design is an attractive and cost-effective approach. Previous studies found that protein rootletin (PcRoo) is a target protein of arecoline, when interacted with Pomacea canaliculata. In this study, we modeled the target protein through threading, and the binding energy between arecoline and protein PcRoo was calculated as -5.02 kcal/mol by molecular docking. Furthermore, two target compounds, baclofen and acedoben, with molluscicidal activity in theory were obtained by virtual screening in database DrugBank. The in vivo bioassay showed that baclofen could induce typical poisoning symptoms on P. canaliculata, which were characterized by weakness of foot muscles and loss of gill cilia, and the LC50 value was 16.2437 mg/L (72 h). Additionally, after 15 mg/L baclofen treatment, the oxygen consumption rate, ammonia excretion rate, and oxygen nitrogen ratio of P. canaliculata declined. Furthermore, the treatment of baclofen also decreased the gene expression level of PcRoo. These trends were the same as the changes after 5 mg/L arecoline treatment. The pharmacophore characteristics were further analyzed, and the results showed that the chemical structures of baclofen and arecoline were correlated in molluscicidal activity. These findings indicate that baclofen has the potential to be used as a molluscicide in agricultural production, and other new molluscicides may be obtained by virtual screening based on protein PcRoo.

11.
Plant Dis ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36724101

ABSTRACT

Soybean (Glycine max L.) is one of the important oilseed and vegetable crop worldwide and provides the main source of vegetable oil and proteins for human and livestock (Hartman et al. 2011). In October 2021, approximately 35% of soybean pods suffered from anthracnose in the farmer's field in Chongzhou, Sichuan Province, China (103°40'12"E, 30°37'48"N), and the occurrence area accounted for about 3.3 hm2. Symptoms of soybean were characterized by yellow spots at the initial stage, gradually expanded into dark brown spots, and eventually amounts of small black particles were densely arranged in the wheel shape on dead spots. Diseased spots of soybean pods were cut into pieces and sequentially sterilized in 75% alcohol for 30 s, 4% sodium hypochlorite for 30 s, sterile water for 3 times. After that, these pieces were placed on potato dextrose agar (PDA), and incubated at 25±2°C in the dark for 5-7 days. Single spore was separately picked and transferred to a fresh PDA plate to obtain pure culture isolates. Total six pure isolates were collected, and among them the hyphae of representative isolate 8-B were initially white, turned grey gradually on PDA medium, and the colonial reverse were radiating, whorled or a mixture of both. Conidia of 8-B were septate, hyaline, unicellular, cylindrical, obtusely rounded at both ends with 1 or 2 oil balls inside, and 10.5-17.6 µm in length and 7.0 µm-3.6 µm in width (n=100). The conidial appressoria were brown subspherical, 6.9 µm-13.3 µm in length and 5.6 µm-10.1 µm (n=50) in width. Based on morphological and cultural characteristics, the isolate 8-B was tentatively identified as Colletotrichum gloeosporioides species complex(Weir et al. 2012). To test pathogenicity, the mycelial plugs were inoculated on 20 detached soybean pods at full seed (R6) stage, and three areas of each pod were lightly scratched using a needle prior to inoculation. As controls, the PDA plugs were attached to the pinned-treated pods. Three independent replicates were conducted for control and inoculated pods, respectively. All pods were incubated in a greenhouse at 25 ± 2°C with a relative humidity of approximately 90%. After 4-5 days post-inoculation, typical anthracnose lesions were observed on the inoculated pods while the control pods remained healthy only with small wound spots. The pathogen re-isolated from all the inoculated pods were morphologically identical to the inoculation isolate (8-B). For further molecular verification, the six gene fragments including the internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), actin (ACT), ß-tubulin 2 (TUB2) and calmodulin (CAL) were amplified and sequenced (Weir et al. 2012, Damm et al. 2012), and the obtained sequences were deposited in GenBank (Accession numbers ON960278, ON685214, ON964475, ON974476, ON685215 and ON964477, respectively). All six gene sequences of 8-B had a high identity to C. fructicola (the stand isolate ICMP 18581) with the accession numbers ON960278 (100%), ON974476 (96%), ON685214 (99%), ON964475 (99%), ON685215 (100%), and ON964477 100%), respectively. Anthracnose disease caused by C. fructicola has previously been reported to affect a range of plant hosts worldwide (Guarnaccia et al. 2017). However, it is still unknown on C. fructicola causing anthracnose in soybean in China. This study firstly reports C. fructicola as the causal agent of anthracnose on soybean in the country, and provides a theoretical basis for the diagnosis and control of this disease.

12.
Pestic Biochem Physiol ; 188: 105243, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36464353

ABSTRACT

Previous studies have found that temperature influences molluscicidal the activity of pedunsaponin A (PA), which may be related to the expression of Hsp70, a cold-tolerance gene in Pomacea canaliculata. We determined the temperature effect of PA and the relationship between Hsp70 and temperature sensitivity of P. canaliculata poisoned by PA. Toxicity tests resulted in LC50 values of 17.7239 mg⋅L-1 at 10 °C, which decreased to 2.5774 mg⋅L-1 at 30 °C, implying a positive correlation between toxicity of PA and temperature. After Hsp70 being interfered, the mortality rate of P. canaliculata treated with PA for 72 h was 70%, which was significantly higher than that of snails treated with PA for 72 h without interfering (56.7%). Meanwhile, immune enzyme activities such as SOD, ACP and AKP were significantly increased in the interfered group and expression level of PcAdv in the gill was also significantly increased. These results suggest that deletion of Hsp70 promotes the activation of some immune enzymes of P. canaliculata and elevates the content of target proteins to cope with the dual stresses of low temperatures and molluscicides. These findings indicate that the Hsp70 plays an important role in influencing the temperature sensitivity of P. canaliculata when treated with PA.


Subject(s)
Gastropoda , Molluscacides , Animals , Temperature , HSP70 Heat-Shock Proteins/genetics , Cold Temperature
13.
Front Plant Sci ; 13: 993519, 2022.
Article in English | MEDLINE | ID: mdl-36340362

ABSTRACT

Seed-borne pathogens cause diverse diseases at the growth, pre- and post-harvest stage of soybean resulting in a large reduction in yield and quality. The physiological and metabolic aspects of seeds are closely related to their defense against pathogens. Recently, Fusarium fujikuroi has been identified as the dominant seed-borne fungi of soybean seed decay, but little information on the responses of soybean seeds induced by F. fujikuroi is available. In this study, a time-course symptom development of seed decay was observed after F. fujikuroi inoculation through spore suspension soaking. The germination rate and the contents of soluble sugar and soluble protein were significantly altered over time. Both chitinase and ß-1,3-glucanase as important fungal cell wall-degrading enzymes of soybean seeds were also rapidly and transiently activated upon the early infection of F. fujikuroi. Metabolic profile analysis showed that the metabolites in glycine, serine, and threonine metabolism and tryptophan metabolism were clearly induced by F. fujikuroi, but different metabolites were mostly enriched in isoflavone biosynthesis, flavone biosynthesis, and galactose pathways. Interestingly, glycitein and glycitin were dramatically upregulated while daidzein, genistein, genistin, and daidzin were largely downregulated. These results indicate a combination of physiological responses, cell wall-related defense, and the complicated metabolites of soybean seeds contributes to soybean seed resistance against F. fujikuroi, which are useful for soybean resistance breeding.

14.
Front Microbiol ; 13: 1009689, 2022.
Article in English | MEDLINE | ID: mdl-36386647

ABSTRACT

Rhizosphere microbes play a vital role in plant health and defense against soil-borne diseases. Previous studies showed that maize-soybean relay strip intercropping altered the diversity and composition of pathogenic Fusarium species and biocontrol fungal communities in the soybean rhizosphere, and significantly suppressed soybean root rot. However, whether the rhizosphere bacterial community participates in the regulation of this intercropping on soybean root rot is not clear. In this study, the rhizosphere soil of soybean healthy plants was collected in the continuous cropping of maize-soybean relay strip intercropping and soybean monoculture in the fields, and the integrated methods of microbial profiling, dual culture assays in vitro, and pot experiments were employed to systematically investigate the diversity, composition, and function of rhizosphere bacteria related to soybean root rot in two cropping patterns. We found that intercropping reshaped the rhizosphere bacterial community and increased microbial community diversity, and meanwhile, it also recruited much richer and more diverse species of Pseudomonas sp., Bacillus sp., Streptomyces sp., and Microbacterium sp. in soybean rhizosphere when compared with monoculture. From the intercropping, nine species of rhizosphere bacteria displayed good antagonism against the pathogen Fusarium oxysporum B3S1 of soybean root rot, and among them, IRHB3 (Pseudomonas chlororaphis), IRHB6 (Streptomyces), and IRHB9 (Bacillus) were the dominant bacteria and extraordinarily rich. In contrast, MRHB108 (Streptomyces virginiae) and MRHB205 (Bacillus subtilis) were the only antagonistic bacteria from monoculture, which were relatively poor in abundance. Interestingly, introducing IRHB3 into the cultured substrates not only significantly promoted the growth and development of soybean roots but also improved the survival rate of seedlings that suffered from F. oxysporum infection. Thus, this study proves that maize-soybean relay strip intercropping could help the host resist soil-borne Fusarium root rot by reshaping the rhizosphere bacterial community and driving more beneficial microorganisms to accumulate in the soybean rhizosphere.

15.
Molecules ; 27(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364450

ABSTRACT

Niclosamide (NI) is the main molluscicide used to control Pomacea canaliculata (Lamarck) (Architaenioglossa: Ampullariidae). However, NI failed to inhibit snail climbing during the treatment process. In this study, we examined the effect of NI combined with pedunsaponin A at an ineffective concentration. The molluscicidal effect of Pedunsaponin A on NI was evidently synergistic after 48 h, and the synergism ratio (SR) was 1.82 after treatment for 72 h at 0.8 mg·L-1. Examination of the climbing adhesion effect showed that a high concentration of Pedunsaponin A (0.4 mg·L-1 and 0.8 mg·L-1) combined with NI significantly inhibited the climbing of P. canaliculata. We further studied the synergism mechanism; the results of histopathological observation showed that the siphon appeared cavities, the muscle fibers of the ventricular were severely dissolved, and kidney tubule arrangement was distorted after NI adding Pedunsaponin A. In addition, the hemocyte survival rate and the content of hemocyanin decreased significantly. According to the results of our study, the synergism mechanism may hinder oxygen transport of P. canaliculata, influencing the supply of energy; the ability of immune defense and excretion and metabolic detoxification decreased, prolonging the action time of NI in the body.


Subject(s)
Molluscacides , Saponins , Animals , Niclosamide/pharmacology , Molluscacides/pharmacology , Saponins/pharmacology , Snails
16.
Ecotoxicol Environ Saf ; 246: 114198, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36272173

ABSTRACT

Pomacea canaliculata, as an invasive snail in China, can adversely affect agricultural crop yields, ecological environment, and human health. In this paper, we studied the molluscicidal activity and mechanisms of arecoline against P. canaliculata. The molluscicidal activity tests showed that arecoline exhibits strong toxicity against P. canaliculata, and the LC50 value (72 h) was 1.05 mg/L (15 ± 2 mm shell diameter). Additionally, Molluscicidal toxicity were negatively correlated with the size of snails. Snails (25 ± 2 mm shell diameter) were choosed for mechanisms research and the result of microstructure and biochemistry showed that arecoline (4 mg/L, 20 â„ƒ) had strong toxic effect on the gill, and the main signs were the loss of cilia in the gill filaments. Moreover, arecoline significantly decreased the oxygen consumption rate, ammonia excretion rate and inhibited acetylcholinesterase (AChE). Then, the changes in protein expression were studied by iTRAQ, and 526 downregulated proteins were found. Among these, cilia and flagella-associated 157-like (PcCFP) and rootletin-like (PcRoo) were selected as candidate target proteins through bioinformatics analysis, and then RNA interference (RNAi) was adopted to verify the function of PcCFP and PcRoo. The results showed that after arecoline treated, the mortality and the cilia shedding rate of PcRoo RNAi treated group was significantly lower than control group. The above results indicate that arecoline can bind well with protein PcRoo, and then leads to the drop of gill cilia, affect respiratory metabolism, accelerate its entry into hemolymph, inhibit AChE and finally leads to the death of P. canaliculata.


Subject(s)
Gastropoda , Molluscacides , Animals , Humans , Arecoline , Acetylcholinesterase , Molluscacides/toxicity , Lethal Dose 50
17.
Molecules ; 27(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889462

ABSTRACT

The separation of chemical components from wild plants to develop new pesticides is a hot topic in current research. To evaluate the antimicrobial effects of metabolites of Ligusticum chuanxiong (CX), we systematically studied the antimicrobial activity of extracts of CX, and the active compounds were isolated, purified and structurally identified. The results of toxicity measurement showed that the extracts of CX had good biological activities against Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata and Pythium aphanidermatum, and the value of EC50 were 130.95, 242.36, 332.73 and 307.29 mg/L, respectively. The results of in vivo determination showed that under the concentration of 1000 mg/L, the control effect of CX extract on Blumeria graminis was more than 40%, and the control effect on Botrytis cinerea was 100%. The antifungal active components of CX were identified as Senkyunolide A and Ligustilide by mass spectrometry and nuclear magnetic resonance. The MIC (minimum inhibitory concentration) value of Senkyunolide A and Ligustilide against Fusarium graminearum were 7.81 and 62.25 mg/L, respectively. As a new botanical fungicide with a brightly exploitative prospect, CX extract has potential research value in the prevention and control of plant diseases.


Subject(s)
Drugs, Chinese Herbal , Ligusticum , Antifungal Agents/pharmacology , Botrytis , Drugs, Chinese Herbal/chemistry , Ligusticum/chemistry
18.
Front Chem ; 10: 872480, 2022.
Article in English | MEDLINE | ID: mdl-35464223

ABSTRACT

The development of new biological fungicides using plant metabolites has become an important direction for pesticide development, and previous studies found that Radix Aucklandiae had a certain inhibitory effect on plant pathogens. In this study, we systematically studied the antimicrobial activity of extracts of Radix Aucklandiae, and the active compounds were isolated, purified and structurally identified. Ethanol extracts of Radix Aucklandiae had different inhibitory effects on seven common plant-pathogenic fungi, with EC50 (concentration for 50% of maximal effect) values ranging from 114.18 mg/L to 414.08 mg/L. The extract at concentration of 1,000 mg/L had a significant control effect on strawberry grey mould and wheat powdery mildew of more than 90%. Three active compounds were isolated and purified from the extract, which were identified as alantolactone, dehydrocostus lactone and costunolide. All three compounds showed significant inhibitory effects on Botrytis cinerea, and the MIC (minimal inhibitory concentration) values were 15.63 mg/L, 3.91 mg/L and 15.63 mg/L. Dehydrocostus lactone also showed obvious inhibitory effect on Fusarium graminearum with an MIC value of 62.25 mg/L. The extract of Radix Aucklandiae has high antimicrobial activity against some common plant-pathogenic fungi, and the work lays a foundation for the development of extracts of Radix Aucklandiae as botanical fungicides.

19.
Pest Manag Sci ; 78(7): 3098-3107, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35439342

ABSTRACT

Target-protein-based pesticide screening has attracted wide-ranging attention on pesticide science. Pedunsaponin A (PA) is a compound isolated from the root of Pueraria peduncularis, and it has a strong toxic effect on Pomacea canaliculata. Previous studies found that Advlin (PcAdv) and neural Wiskott-Aldrich syndrome isoform X1(PcnWAS) are target proteins of PA when interacted with P. canaliculata. In this study, we modeled the two target proteins through I-Tasser and identified the pharmacophore of PA binding to the two target proteins by molecular docking. Furthermore, through virtual screening, potassium alginate was found to strongly bind to the target proteins in theory. In vivo bioassay showed that, similar to PA treatment, potassium alginate was able to induce typical poisoning symptoms on P. canaliculata, which were characterized by abnormal increase of excreta, weakening of climbing capacity, loss of gill cilia and decrease in hemocyanin content, and even cause death of P. canaliculata with a 13.33% mortality rate under 100 mg L-1 concentration. Furthermore, the treatment of potassium alginate also decreased the gene expression level of PcAdv and PcnWAS. These findings indicate that potassium alginate can affect the living state of P. canaliculata, and that it is feasible to develop new molluscicides based on PcAdv and PcnWAS by virtual screening. © 2022 Society of Chemical Industry.


Subject(s)
Gastropoda , Molluscacides , Saponins , Alginates , Animals , Gastropoda/genetics , Molecular Docking Simulation , Triterpenes
20.
J Asian Nat Prod Res ; 24(7): 648-656, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34251917

ABSTRACT

Five compounds were identified from Tripterygium wilfordii, including two novel compounds and three previously known compounds. Two newly discovered compounds are celangulin CY (1α,2α,3ß,4ß,6ß,8α,13-hepacetoxy-9ß-benzoyloxy-ß-dihydroagarofuran) and celangulin CQ (1α-nicotinoyloxy-2α,3ß,6ß-triacetoxy-9ß-furancarbonyloxy-13-isobutanoyloxy-4ß-hydroxy-ß-dihydroagarofuran). Their structures were determined using nuclear magnetic resonance (NMR), mass spectrometry (MS), and high-pressure liquid chromatography (HPLC). The isolated compounds were tested for insecticidal activity against the third instar larvae of Spodoptera frugiperda. Both celangulin CY and celangulin CQ exhibited significantly higher oral toxicity in the larvae than that exhibited by the three known compounds.


Subject(s)
Drugs, Chinese Herbal , Insecticides , Sesquiterpenes , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Insecticides/pharmacology , Magnetic Resonance Spectroscopy , Molecular Structure , Sesquiterpenes/chemistry , Tripterygium
SELECTION OF CITATIONS
SEARCH DETAIL
...