Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Reproduction ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38995729

ABSTRACT

Insufficient trophoblast migration and impaired uterine spiral artery remodeling are implicated in the pathogenesis of preeclampsia, contributing to inadequate placentation. However, the molecular mechanism underlying this process remains unclear. Aerobic glycolysis, which produces substantial lactate, is crucial for establishing a favorable microenvironment for early uterine preparation and supporting embryo implantation and trophoblast migration. In the present study, we have demonstrated that SORBS2, an RNA-binding protein, regulated aerobic glycolysis and significantly improved trophoblast migration in vitro. Our results showed that SORBS2 expression was significantly reduced in human PE placentas and in trophoblasts during hypoxia. Overexpression of SORBS2 enhanced cell proliferation and migration, whereas knockdown of SORBS2 decreased these functions in HTR-8/SVneo cells. Mechanistic studies have demonstrated that SORBS2 directly interacts with the 3' untranslated regions (UTRs) of key glycolysis-related genes, specifically HK2. This interaction results in enhanced stability of HK2 and activation of glycolysis. Moreover, silencing HK2 abrogated the enhancement of proliferation and migration of HTR-8/SVneo cells induced by SORBS2. In conclusion, our findings suggest that the downregulation of SORBS2 may contribute to the pathogenesis of preeclampsia by regulating mRNA stability and inhibiting trophoblast migration during placentation.

2.
Cell Mol Life Sci ; 81(1): 290, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970666

ABSTRACT

Pattern recognition receptors (PRRs) play a crucial role in innate immunity, and a complex network tightly controls their signaling cascades to maintain immune homeostasis. Within the modification network, posttranslational modifications (PTMs) are at the core of signaling cascades. Conventional PTMs, which include phosphorylation and ubiquitination, have been extensively studied. The regulatory role of unconventional PTMs, involving unanchored ubiquitination, ISGylation, SUMOylation, NEDDylation, methylation, acetylation, palmitoylation, glycosylation, and myristylation, in the modulation of innate immune signaling pathways has been increasingly investigated. This comprehensive review delves into the emerging field of unconventional PTMs and highlights their pivotal role in innate immunity.


Subject(s)
Immunity, Innate , Protein Processing, Post-Translational , Signal Transduction , Humans , Animals , Signal Transduction/immunology , Ubiquitination , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/immunology , Acetylation , Methylation , Phosphorylation , Sumoylation , Glycosylation
3.
J Inorg Biochem ; 259: 112655, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38943844

ABSTRACT

Recent breakthroughs in cancer immunology have propelled immunotherapy to the forefront of cancer research as a promising treatment approach that harnesses the body's immune system to effectively identify and eliminate cancer cells. In this study, three novel cyclometalated Ir(III) complexes, Ir1, Ir2, and Ir3, were designed, synthesized, and assessed in vitro for cytotoxic activity against several tumor-derived cell lines. Among these, Ir1 exhibited the highest cytotoxic activity, with an IC50 value of 0.4 ± 0.1 µM showcasing its significant anticancer potential. Detailed mechanistic analysis revealed that co-incubation of Ir1 with 143B cells led to Ir1 accumulation within mitochondria and the endoplasmic reticulum (ER). Furthermore, Ir1 induced G0/G1 phase cell cycle arrest, while also diminishing mitochondrial membrane potential, disrupting mitochondrial function, and triggering ER stress. Intriguingly, in mice the Ir1-induced ER stress response disrupted calcium homeostasis to thereby trigger immunogenic cell death (ICD), which subsequently activated the host antitumor immune response while concurrently dampening the in vivo tumor-induced inflammatory response.

4.
Int J Biol Macromol ; 274(Pt 1): 133298, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917918

ABSTRACT

BACKGROUND: Placental exosomes are a kind of intercellular communication media secreted by placental cells during pregnancy, exosomogenesis and release are regulated by many secretory glycoproteins. CREG1 is a kind of secreted glycoprotein widely expressed in various organs and tissues of the body, which inhibits cell proliferation and enhances cell differentiation. The aim of this study was to explore the role of CREG1 in regulating exosomogenesis during the proliferation and differentiation of placental trophoblast cells in early pregnant dairy cows by targeting IGF2R and participating in regulating organoid differentiation via exosomes transport. METHODS: Molecular biological methods were firstly used to investigate the expression patterns of CREG1, IGF2R and exosomal marker proteins in early placental development of pregnant dairy cows. Subsequently, the effects of CREG1 on the formation and release of bovine placental trophoblast (BTCs) derived exosomes by targeting IGF2R were investigated. Further, the effects of CREG1 on the change of gene expression patterns along with the transport of exosomes to recipient cells and participate in regulating the differentiation of organoids were explored. RESULTS: The expression of CREG1, IGF2R and exosomal marker proteins increased with the increase of pregnancy months during the early evolution of placental trophoblast cells in dairy cows. Overexpression of Creg1 enhanced the genesis and release of exosomes derived from BTCs, while knocking down the expression of Igf2r gene not only inhibited the genesis of exosomes, but also inhibited the genesis and release of exosomes induced by overexpression of CREG1 protein. Interestingly, IGF2R can regulate the expression of CREG1 through reverse secretion. What's more, the occurrence and release of trophoblast-derived exosomes are regulated by CREG1 binding to IGF2R, which subsequently binds to Rab11. CREG1 can not only promote the formation and release of exosomes in donor cells, but also regulate the change of gene expression patterns along with the transport of exosomes to recipient cells and participate in regulating the early development of placenta. CONCLUSIONS: Our study confirmed that CREG1 is involved in the exosomogenesis and release of exosomes during the proliferation and differentiation of placental trophoblast cells in early pregnant dairy cows by targeting IGF2R, and is involved in the regulation of organoid differentiation through exosome transport.

5.
Adv Sci (Weinh) ; : e2404064, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887870

ABSTRACT

Vitiligo is an autoimmune disease characterized by epidermal melanocyte destruction, with abnormal autoimmune responses and excessive oxidative stress as two cardinal mechanisms. Human umbilical mesenchymal stem cells-derived exosomes (hUMSCs-Exos) are regarded as promising therapeutic choice for autoimmune diseases due to potent immunosuppressive and anti-oxidative properties, which can be potentiated under 3D cell culture condition. Nevertheless, whether exosomes derived from 3D spheroids of hUMSCs (3D-Exos) exhibit considerable therapeutic effect on vitiligo and the underlying mechanism remain elusive. In this study, systemic administration of 3D-Exos showed a remarkable effect in treating mice with vitiligo, as revealed by ameliorated skin depigmentation, less CD8+T cells infiltration, and expanded Treg cells in skin, and 3D-Exos exerted a better effect than 2D-Exos. Mechanistically, 3D-Exos can prominently facilitate the expansion of Treg cells in vitiligo lesion and suppress H2O2-induced melanocytes apoptosis. Forward miRNA profile analysis and molecular experiments have demonstrated that miR-132-3p and miR-125b-5p enriched in 3D-Exos greatly contributed to these biological effects by targeting Sirt1 and Bak1 respectively. In aggregate, 3D-Exos can efficiently ameliorate vitiligo by simultaneously potentiating Treg cells-mediated immunosuppression and suppressing oxidative stress-induced melanocyte damage via the delivery of miR-132-3p and miR-125b-5p. The employment of 3D-Exos will be a promising treament for vitiligo.

6.
Front Psychol ; 15: 1376233, 2024.
Article in English | MEDLINE | ID: mdl-38737951

ABSTRACT

Background: As a crucial juncture in students' educational journey, junior high school presents challenges that profoundly influence well-being and academic performance. Physical activity emerges as a pivotal factor shaping the holistic development of junior high school students. Beyond its recognized impact on physical and mental health, engaging in regular physical activity proves effective in augmenting students' adaptability to school life. Despite its importance, the mechanisms through which physical activity influences school adaptation in junior high school students remain understudied in academic research. Objective: In exploring the potential mechanisms, this study aims to validate the mediating roles of resilience and coping styles by examining the association between physical activity and school adaptation among junior high school students. Methods: This study employed cross-sectional survey approach among junior high school students in China. Through the convenience sampling, 1,488 participants aged from 12 to 16 years old (Average age = 13.59, SD = 1.017) from two Junior high schools in Changsha City, Hunan Province were recruited to complete the Physical Activity Scale, School Adaptation Questionnaire for Junior High School Students, Resilience Scale for Adolescents, and Simple Coping Styles Questionnaire. For data analysis, the SPSS 26.0 and Amos 26.0 were used for statistical processing. Results: The results showed that physical activity exhibited a significant correlation with school adaptation (r = 0.656, p < 0.001). Resilience, positive coping style and negative coping style played partial mediating roles between physical activity and school adaptation, with the effect size were 0.229, 0.170, 0.171. The chain mediation effect size of resilience and positive coping style was 0.042, while the chain mediation effect size of resilience and negative coping style was 0.050. Conclusion: Physical activity positively predicts Chinese junior high school students' school adaptation through resilience and coping styles, suggesting that junior high school students should engage in regular physical activity, so as to improve their resilience and positive coping styles, mitigating negative coping styles, thus promoting their school adaptation.

7.
J Dermatol Sci ; 114(3): 115-123, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806323

ABSTRACT

BACKGROUND: Vitiligo is a skin disorder with melanocyte destruction caused by complex interplay between multiple genetic and environmental factors. Recent studies have suggested DNA methylation is involved in the melanocyte damage, but the underlying mechanism remains unknown. OBJECTIVE: To explore the abnormal DNA methylation patterns in vitiligo lesional and nonlesional skin, and the mechanism of DNA methylation involved in vitiligo pathogenesis. METHODS: Initially, the genome-wide aberrant DNA methylation profiles in lesional and nonlesional skin of vitiligo were detect via Illumina methylation EPIC 850k Beadchip. Subsequently, a comprehensive analysis was conduct to investigate the genomic characteristics of differentially methylated regions (DMRs). Furthermore, the effects of key aberrant methylated genes on cell apoptosis and function of both melanocytes and keratinocytes were further identified and validated by western bloting, ELISA, and immunofluorescence. RESULTS: Compared with nonlesional skins, we discovered 79 significantly differentially methylated CpG sites in vitiligo lesions. These DMRs were mainly located in the gene body and the TS1500 region. Annexin A2 receptor (ANXA2R), a crucial gene in cell apoptosis, was hypermethylated in vitiligo lesions. Furthermore, we showed that ANXA2R displayed hypermethylation and low expression levels in both keratinocytes and melanocytes of vitiligo patients, and the hypermethylated-triggered downregulation of ANXA2R under oxidative stress induced melanocyte apoptosis, and inhibited the secretion of stem cell factor (SCF) from keratinocytes thus impaired the survival of melanocytes. CONCLUSIONS: Our study illustrates the DNA methylation modification in vitiligo, and further demonstrates the molecular mechanism of hypermethylated ANXA2R in the dysfunction of melanocytes under oxidative stress.


Subject(s)
Apoptosis , DNA Methylation , Keratinocytes , Melanocytes , Oxidative Stress , Vitiligo , Humans , Vitiligo/genetics , Vitiligo/pathology , Melanocytes/metabolism , Melanocytes/pathology , Apoptosis/genetics , Keratinocytes/metabolism , Adult , Male , Female , CpG Islands/genetics , Skin/pathology , Skin/metabolism , Young Adult , Case-Control Studies , Middle Aged
8.
Oncol Res ; 32(4): 717-726, 2024.
Article in English | MEDLINE | ID: mdl-38560576

ABSTRACT

The long non-coding RNA, Negative Regulator of Antiviral Response (NRAV) has been identified as a participant in both respiratory virus replication and immune checkpoints, however, its involvement in pan-cancer immune regulation and prognosis, particularly those of hepatocellular carcinoma (HCC), remains unclear. To address this knowledge gap, we analyzed expression profiles obtained from The Cancer Genome Atlas (TCGA) database, comparing normal and malignant tumor tissues. We found that NRAV expression is significantly upregulated in tumor tissues compared to adjacent nontumor tissues. Kaplan-Meier (K-M) analysis revealed the prognostic power of NRAV, wherein overexpression was significantly linked to reduced overall survival in a diverse range of tumor patients. Furthermore, noteworthy associations were observed between NRAV, immune checkpoints, immune cell infiltration, genes related to autophagy, epithelial-mesenchymal transition (EMT), pyroptosis, tumor mutational burden (TMB), and microsatellite instability (MSI) across different cancer types, including HCC. Moreover, NRAV upregulation expression was associated with multiple pathological stages by clinical observations. Furthermore, our investigation revealed a substantial elevation in the expression of NRAV in both HCC tumor tissues and cells compared to normal tissues and cells. The inhibition of NRAV resulted in the inhibition of cell proliferation, migration, and invasion in HCC cells, while also influencing the expression of CD274 (PD-L1) and CD44, along with various biomarkers associated with EMT, autophagy, and pyroptosis. The aforementioned results propose NRAV as a promising prognostic biomarker for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Feasibility Studies , Liver Neoplasms/genetics , Biomarkers , Autophagy , Prognosis
9.
Front Behav Neurosci ; 18: 1357453, 2024.
Article in English | MEDLINE | ID: mdl-38562516

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is a neurological condition that is marked by deficits in social interaction, difficulty expressing oneself, lack of enthusiasm, and stereotypical conduct. The TOMATIS training method is an effective music therapy for children with ASD for its individually developed programs to improve behavioral deficits. Methods: The research employed both longitudinal and crosssectional designs. Results: In the cross-sectional study, the experimental group showed significant improvement in symptoms after TOMATIS training compared to the control group of children with ASD. The results validated the effect of TOMATIS treatment for ASD-related deficits, including perceptual-motor, attentional, social, and emotional issues. Discussion: ASD's auditory hypersensitivity hampers social information processing, but TOMATIS enhances cochlear frequency selectivity, aiding in capturing relevant auditory stimuli. In addition, the longitudinal study confirmed these findings, which proved TOMATIS training effective in clinically treating ASD. This study focused on audiometric indicators and behavioural improvement, elucidating the mechanisms behind the training's success. Behavioral improvements might stem from TOMATIS' frequency selectivity, reshaping auditory organ-cortical feedback loops to filter interference and focus on valid information.

10.
Mar Drugs ; 22(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38667791

ABSTRACT

Cholestane-3ß,5α,6ß-triol (CT) and its analogues are abundant in natural sources and are reported to demonstrate cytotoxicity toward different kinds of tumor cells without a deep probe into their mechanism of action. CT is also one of the major metabolic oxysterols of cholesterol in mammals and is found to accumulate in various diseases. An extensive exploration of the biological roles of CT over the past few decades has established its identity as an apoptosis inducer. In this study, the effects of CT on A549 cell death were investigated through cell viability assays. RNA-sequencing analysis and western blot of CT-treated A549 cells revealed the role of CT in inducing endoplasmic reticulum (ER) stress response and enhancing autophagy flux, suggesting a putative mechanism of CT-induced cell-death activation involving reactive oxygen species (ROS)-mediated ER stress and autophagy. It is reported for the first time that the upregulation of autophagy induced by CT can serve as a cellular cytotoxicity response in accelerating CT-induced cell death in A549 cells. This research provides evidence for the effect of CT as an oxysterol in cell response to oxidative damage and allows for a deep understanding of cholesterol in its response in an oxidative stress environment that commonly occurs in the progression of various diseases.


Subject(s)
Autophagy , Cell Survival , Cholestanols , Endoplasmic Reticulum Stress , Reactive Oxygen Species , Humans , Endoplasmic Reticulum Stress/drug effects , Autophagy/drug effects , A549 Cells , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Apoptosis/drug effects , Cholesterol/metabolism , Cholestanes/pharmacology , Cell Death/drug effects , Oxidative Stress/drug effects
11.
DNA Cell Biol ; 43(3): 125-131, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350140

ABSTRACT

Cornus iridoid glycosides (CIGs), including loganin and morroniside, are the main active components of Cornus officinalis. As one of the key enzymes in the biosynthesis of CIGs, geranyl pyrophosphate synthase (GPPS) catalyzes the formation of geranyl pyrophosphate, which is the direct precursor of CIGs. In this study, the C. officinalis geranyl pyrophosphate synthase (CoGPPS) sequence was cloned from C. officinalis and analyzed. The cDNA sequence of the CoGPPS gene was 915 bp (GenBank No. OR725699). Phylogenetic analysis showed that CoGPPS was closely related to the GPPS sequence of Actinidia chinensis and Camellia sinensis, but relatively distantly related to Paeonia lactiflora and Tripterygium wilfordii. Results from the quantitative real-time PCR showed the spatiotemporal expression pattern of CoGPPS; that is, CoGPPS was specifically expressed in the fruits. Subcellular localization assay proved that CoGPPS was specifically found in chloroplasts. Loganin and morroniside contents in the tissues were detected by high-performance liquid chromatography, and both compounds were found to be at higher levels in the fruits than in leaves. Thus, this study laid the foundation for further studies on the synthetic pathway of CIGs.


Subject(s)
Cornus , Iridoids , Polyisoprenyl Phosphates , Cornus/genetics , Cornus/chemistry , Phylogeny , Iridoid Glycosides , Cloning, Molecular
12.
BMC Infect Dis ; 24(1): 206, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360539

ABSTRACT

BACKGROUND: Fear of a global public health issue and fresh infection wave in the persistent COVID-19 pandemic has been enflamed by the appearance of the novel variant Omicron BF.7 lineage. Recently, it has been seeing the novel Omicron subtype BF.7 lineage has sprawled exponentially in Hohhot. More than anything, risk stratification is significant to ascertain patients infected with COVID-19 who the most need in-hospital or in-home management. The study intends to understand the clinical severity and epidemiological characteristics of COVID-19 Omicron subvariant BF.7. lineage via gathering and analyzing the cases with Omicron subvariant in Hohhot, Inner Mongolia. METHODS: Based upon this, we linked variant Omicron BF.7 individual-level information including sex, age, symptom, underlying conditions and vaccination record. Further, we divided the cases into various groups and assessed the severity of patients according to the symptoms of patients with COVID-19. Clinical indicators and data might help to predict disadvantage outcomes and progression among Omicron BF.7 patients. RESULTS: In this study, in patients with severe symptoms, some indicators from real world data such as white blood cells, AST, ALT and CRE in patients with Omicron BF.7 in severe symptoms were significantly higher than mild and asymptomatic patients, while some indicators were significantly lower. CONCLUSIONS: Above results suggested that the indicators were associated with ponderance of clinical symptoms. Our survey emphasized the value of timely investigations of clinical data obtained by systemic study to acquire detailed information.


Subject(s)
COVID-19 , Humans , Retrospective Studies , COVID-19/epidemiology , Pandemics , China/epidemiology , Public Health
13.
Cell Death Dis ; 15(2): 138, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355626

ABSTRACT

Cervical cancer (CC) is the most common gynecologic malignancy, which seriously threatens the health of women. Lipid metabolism is necessary for tumor proliferation and metastasis. However, the molecular mechanism of the relationship between CC and lipid metabolism remains poorly defined. We revealed the expression of IGF2BP3 in CC exceeded adjacent tissues, and was positively associated with tumor stage using human CC tissue microarrays. The Cell Counting Kit-8, colony formation assay, 5-ethynyl-2'-deoxyuridine assay, transwell assays, wound-healing assays, and flow cytometry assessed the role of IGF2BP3 in proliferation and metastasis of CC cells. Besides, exploring the molecular mechanism participating in IGF2BP3-driven lipid metabolism used RNA-seq, which determined SCD as the target of IGF2BP3. Further, lipid droplets, cellular triglyceride (TG) contents, and fatty acids were accessed to discover that IGF2BP3 can enhance lipid metabolism in CC. Moreover, RIP assay and methylated RNA immunoprecipitation experiments seeked the aimed-gene-binding specificity. Lastly, the IGF2BP3 knockdown restrained CC growth and lipid metabolism, after which SCD overexpression rescued the influence in vitro and in vivo using nude mouse tumor-bearing model. Mechanistically, IGF2BP3 regulated SCD mRNA m6A modifications via IGF2BP3-METTL14 complex, thereby enhanced CC proliferation, metastasis, and lipid metabolism. Our study highlights IGF2BP3 plays a crucial role in CC progression and represents a therapeutic latent strategy. It is a potential tactic that blocks the metabolic pathway relevant to IGF2BP3 with the purpose of treating CC.


Subject(s)
Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Lipid Metabolism/genetics , Uterine Cervical Neoplasms/pathology
14.
Immunotargets Ther ; 13: 29-44, 2024.
Article in English | MEDLINE | ID: mdl-38322277

ABSTRACT

Purpose: The pathogenesis of T cell subsets in sepsis during the body's resistance to infection is currently unknown. We aimed to investigate the dynamics and molecular mechanisms of T cells during the development of sepsis. Patients and Methods: Perform single-cell data analysis on peripheral blood mononuclear cells (PBMCs) specimen samples from seven healthy controls, five early-stage sepsis patients, and four late sepsis patients, and the atlas were mapped and analyzed using reference mapping to identify the T cell subpopulations specific to early sepsis. Expression network upstream to investigate the changes of regulatory transcription factors and pathways by pySCENIC. Results: Twenty-two CD4+ T-cell subpopulations and 10 CD8+ T-cell subpopulations were identified by mapping analysis. At the early stage of sepsis, we observed altered ratios of multiple immune cells in PBMCs. Three cell types CD4 Tn cells, CD8 (GZMK+ early Tem), and CD8 (ZNF683+CXCR6- Tm) showed an upward trend (p < 0.05) in the early stages of sepsis compared to normal and returned to normal levels after two weeks. In addition, we found the presence of four sepsis-specific transcription factors (MXI1, CHD1, ARID5A, KLF9) in these three types of cells, which were validated in two external datasets. The differentially expressed genes in CD4 Tn cells, CD8 (GZMK+ early Tem), and CD8 (ZNF683+CXCR6- Tm) cells between the healthy group and the early-stage sepsis group are commonly enriched in the allograft rejection pathway. In addition, it was found that CD8 cells exhibit a trend towards differentiation into CD8 Temra cells in sepsis. Conclusion: We successfully depicted the dynamic changes of T cell subsets during sepsis onset and progression, which provides important clues for an in-depth understanding of T cells' function and regulatory mechanisms during sepsis pathogenesis.

15.
Exp Neurol ; 373: 114682, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199509

ABSTRACT

Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Spinal Cord Injuries , Humans , Spinal Cord Injuries/therapy , Neurons , Chemokines , Spinal Cord
16.
Breast ; 72: 103596, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951051

ABSTRACT

PURPOSE: Almost two percent of individuals in the United States identify as gender non-conforming. In the female-to-male (FTM) transgender population, masculinizing hormone therapy with testosterone is commonly prescribed in gender transition. To date, the effects of exogenous androgens on breast tissue and its roles in altering breast cancer risk are poorly understood. This study examines the histopathologic findings in gender affirming mastectomy (GAM) in transgender FTM patients and the effects of exogenous androgens on estrogen receptors (ER) and androgen receptors (AR). METHODS: A retrospective review of pathology specimens obtained between 2017 and 2020 was performed comparing androgen exposed breast tissue with breast tissue without androgen exposure. Breast specimens were obtained from patients who underwent FTM GAM with recorded exogenous androgen exposure. Control breast specimens were obtained from reduction mammoplasty (RM) procedures in cisgender women which were aged matched to the GAM cohort, as well as postmenopausal women with benign/prophylactic mastectomy procedures; all controls were without androgen exposure. The histopathologic findings were assessed. Immunohistochemistry for AR and ER was performed and the score interpreted by digital image analysis. RESULTS: Androgen-exposed breast tissue revealed dense fibrotic stroma, lobular atrophy, thickened lobular basement membranes, and gynecomastoid changes. Longer duration of androgen exposure resulted in a more pronounced effect. The incidence of atypia or cancer was lower in GAM than RM cohort. ER and AR expression was highest in transgender male breast tissue with intermediate duration of exogenous androgen exposure. CONCLUSION: Increased androgen exposure is associated with lobular atrophy and gynecomastoid changes in breast parenchyma. Overall, ER and AR are expressed strongly in lobular epithelium in patients with prolonged androgen exposure. Exogenous testosterone does not appear to increase risk for breast cancer. Additional studies are needed to investigate the mechanism responsible for these changes at a cellular level and its role in cancer development.


Subject(s)
Breast Neoplasms , Transgender Persons , Female , Humans , Male , Breast Neoplasms/drug therapy , Breast Neoplasms/surgery , Breast Neoplasms/metabolism , Receptors, Androgen/metabolism , Androgens , Mastectomy , Estrogens , Testosterone , Receptors, Estrogen/metabolism , Atrophy
17.
Plants (Basel) ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836156

ABSTRACT

Forsythia suspensa is a deciduous shrub that belongs to the family Myrtaceae, and its dried fruits are used as medicine. F. suspensa contains several secondary metabolites, which exert pharmacological effects. One of the main active components is forsythin, which exhibits free radical scavenging, antioxidant, anti-inflammatory, and anti-cancer effects. Mitogen-activated protein kinase (MAPKs) can increase the activity of WRKY family transcription factors in a phosphorylated manner, thereby increasing the content of secondary metabolites. However, the mechanism of interaction between MAPKs and WRKYs in F. suspensa remains unclear. In this study, we cloned the genes of FsWRKY4 and FsMAPK3, and performed a bioinformatics analysis. The expression patterns of FsWRKY4 and FsMAPK3 were analyzed in the different developmental stages of leaf and fruit from F. suspensa using real-time fluorescence quantitative PCR (qRT-PCR). Subcellular localization analysis of FsWRKY4 and FsMAPK3 proteins was performed using a laser scanning confocal microscope. The existence of interactions between FsWRKY4 and FsMPAK3 in vitro was verified by yeast two-hybridization. Results showed that the cDNA of FsWRKY4 (GenBank number: OR566682) and FsMAPK3 (GenBank number: OR566683) were 1587 and 522 bp, respectively. The expression of FsWRKY4 was higher in the leaves than in fruits, and the expression of FsMAPK3 was higher in fruits but lower in leaves. The subcellular localization results indicated that FsWRKY4 was localized in the nucleus and FsMAPK3 in the cytoplasm and nucleus. The prey vector pGADT7-FsWRKY4 and bait vector pGBKT7-FsMAPK3 were constructed and co-transferred into Y2H Glod yeast receptor cells. The results indicated that FsWRKY4 and FsMAPK3 proteins interact with each other in vitro. The preliminary study may provide a basis for more precise elucidation of the synthesis of secondary metabolites in F. suspensa.

18.
J Cancer Res Ther ; 19(4): 1048-1054, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37675735

ABSTRACT

Background: Hashimoto's thyroiditis (HT) is an independent risk factor for papillary thyroid carcinoma (PTC), but the underlying mechanism remains unknown. The incidence of PTC in patients with HT is significantly elevated, and the presence of both HT and PTC contributes to a higher rate of misdiagnosis. Materials and Methods: Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the thyroid nodule gene chip dataset from GEO Datasets. Serum and clinical data from 191 patients with thyroid nodules at the affiliated hospital were collected for analysis. Experimental techniques, including real-time quantitative PCR, ELISA, immunohistochemistry (IHC), and enzyme activity detection, were used to measure the level of dipeptidyl peptidase 4 (DPP4) in thyroid nodule tissues and serum. Results: Thyroid nodules in patients with HT and PTC exhibit high levels of DPP4, along with elevated concentrations of soluble DPP4 in the serum. These findings demonstrate the potential predictive value of soluble DPP4 for PTC diagnosis. Conclusions: The concentration and enzymatic activity of soluble DPP4 in serum can serve as diagnostic biomarkers for patients with HT-associated PTC.


Subject(s)
Carcinoma, Papillary , Thyroid Neoplasms , Thyroid Nodule , Thyroiditis , Humans , Dipeptidyl Peptidase 4/genetics , Thyroid Cancer, Papillary/diagnosis , Thyroid Neoplasms/diagnosis
19.
J Inorg Biochem ; 248: 112365, 2023 11.
Article in English | MEDLINE | ID: mdl-37690267

ABSTRACT

Ruthenium complexes are one of the most promising anticancer drugs triggered extensive research. Here, the synthesis and characterization of two ruthenium(II) polypyridine complexes containing 8-hydroxylquinoline as ligand, [Ru(dip)2(8HQ)]PF6 (Ru1), [Ru(dpq)2(8HQ)]PF6 (Ru2) (8HQ = 8-hydroxylquinoline; dip = 4,7-diphenyl-1,10-phenanthroline; dpq = pyrazino[2,3-f][1,10]phenanthroline) were reported. On the basis of cytotoxicity tests, Ru1 (IC50 = 1.98 ± 0.02 µM) and Ru2 (IC50 = 10.02 ± 0.19 µM) both showed good anticancer activity in a panel of cell lines, especially in HeLa cells. Researches on mechanism indicated that Ru1 and Ru2 acted on mitochondria and nuclei and induced reactive oxygen species (ROS) accumulation, while the morphology of nuclei and cell cycle had no significant change. Western blot assay further proved that GPX4 and Ferritin were down-regulated, which eventually triggered ferroptosis in HeLa cells. In addition, the toxicity test of zebrafish embryos showed that the concentrations of Ru1 and Ru2 below 120 µM and 60 µM were safe and did not have obvious effect on the normal development of zebrafish embryos.


Subject(s)
Ferroptosis , Ruthenium , Humans , Animals , HeLa Cells , Ferritins , Zebrafish , Oxyquinoline
20.
Bioorg Chem ; 140: 106837, 2023 11.
Article in English | MEDLINE | ID: mdl-37683535

ABSTRACT

Immunotherapy has been shown to provide superior antitumor efficacy by activating the innate immune system to recognize, attack and eliminate tumor cells without seriously harming normal cells. Herein, we designed and synthesized three new cyclometalated iridium(III) complexes (Ir1, Ir2, Ir3) then evaluated their antitumor activity. When co-incubated with HepG2 cells, the complex Ir1 localized in the lysosome, where it induced paraptosis and endoplasmic reticulum stress (ER stress). Notably, Ir1 also induced immunogenic cell death (ICD), promoted dendritic cell maturation that enhanced effector T cell chemotaxis to tumor tissues, down-regulated proportions of immunosuppressive regulatory T cells within tumor tissues and triggered activation of antitumor immunity throughout the body. To date, Ir1 is the first reported iridium(III) complex-based paraptosis inducer to successfully induce tumor cell ICD. Furthermore, Ir1 induced ICD of HepG2 cells without affecting cell cycle or reactive oxygen species levels.


Subject(s)
Immunogenic Cell Death , Iridium , Humans , Hep G2 Cells , Iridium/pharmacology , Cell Cycle , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL