Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Front Plant Sci ; 15: 1403060, 2024.
Article En | MEDLINE | ID: mdl-38779066

Paclitaxel (trade name Taxol) is a rare diterpenoid with anticancer activity isolated from Taxus. At present, paclitaxel is mainly produced by the semi-synthetic method using extract of Taxus tissues as raw materials. The studies of regulatory mechanisms in paclitaxel biosynthesis would promote the production of paclitaxel through tissue/cell culture approaches. Here, we systematically identified 990 transcription factors (TFs), 460 microRNAs (miRNAs), and 160 phased small interfering RNAs (phasiRNAs) in Taxus chinensis to explore their interactions and potential roles in regulation of paclitaxel synthesis. The expression levels of enzyme genes in cone and root were higher than those in leaf and bark. Nearly all enzyme genes in the paclitaxel synthesis pathway were significantly up-regulated after jasmonate treatment, except for GGPPS and CoA Ligase. The expression level of enzyme genes located in the latter steps of the synthesis pathway was significantly higher in female barks than in male. Regulatory TFs were inferred through co-expression network analysis, resulting in the identification of TFs from diverse families including MYB and AP2. Genes with ADP binding and copper ion binding functions were overrepresented in targets of miRNA genes. The miRNA targets were mainly enriched with genes in plant hormone signal transduction, mRNA surveillance pathway, cell cycle and DNA replication. Genes in oxidoreductase activity, protein-disulfide reductase activity were enriched in targets of phasiRNAs. Regulatory networks were further constructed including components of enzyme genes, TFs, miRNAs, and phasiRNAs. The hierarchical regulation of paclitaxel production by miRNAs and phasiRNAs indicates a robust regulation at post-transcriptional level. Our study on transcriptional and posttranscriptional regulation of paclitaxel synthesis provides clues for enhancing paclitaxel production using synthetic biology technology.

2.
Small ; : e2311895, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38660823

The conformation of molecules and materials is crucial in determining their properties and applications. Here, this work explores the reversible transformation between two distinct conformational isomers in metal nanoclusters. This work demonstrates the successful manipulation of a controllable and reversible isomerization of Au18SR14 within an aqueous solution through two distinct methods: ethanol addition and pH adjustment. The initial driver is the alteration of the solution environment, leading to the aggregation of Au18SR14 protected by ligands with smaller steric hindrance. At the atomic level, the folding mode of the unique Au4SR5 staple underpins the observed structural transformation. The reversal of staple conformation leads to color shifting between green and orange-red, and tailors a second emission peak at 725 nm originating from charge transfer from the thiolate to the Au9 core. This work not only deepens the understanding of the surface structure and dual-emission of metal nanoparticles, but also enhances the comprehension of their isomerization.

3.
Small ; 19(44): e2304771, 2023 Nov.
Article En | MEDLINE | ID: mdl-37394703

Nonplanar porphyrins with out-of-plane distortions play crucial roles in many biological functions and chemical applications. The artificial construction of nonplanar porphyrins usually involves organic synthesis and modification, which is a highly comprehensive approach. However, incorporating porphyrins into guest-stimulated flexible systems allows to manipulate the porphyrin distortion through simple ad/desorption of guest molecules. Here, a series of porphyrinic zirconium metal-organic frameworks (MOFs) is reported that exhibit guest-stimulated breathing behavior. X-Ray diffraction analysis and skeleton deviation plots confirm that the material suffers from porphyrin distortion to form a ruffled geometry under the desorption of guest molecules. Further investigation reveals that not only the degree of nonplanarity can be precisely manipulated but also the partial distortion of porphyrin in a single crystal grain can be readily achieved. As Lewis acidic catalyst, the MOF with nonplanar Co-porphyrin exhibits active properties in catalyzing CO2 /propylene oxide coupling reactions. This porphyrin distortion system provides a powerful tool for manipulating nonplanar porphyrins in MOFs with individual distortion profiles for various advanced applications.

4.
Small ; 17(27): e2004381, 2021 07.
Article En | MEDLINE | ID: mdl-33511773

The design of surface ligands is crucial for ligand-protected gold nanoclusters (Au NCs). Besides providing good protection for Au NCs, the surface ligands also play the following two important roles: i) as the outermost layer of Au NCs, the ligands will directly interact with the exterior environment (e.g., solvents, molecules and cells) influencing Au NCs in various applications; and ii) the interfacial chemistry between ligands and gold atoms can determine the structures, as well as the physical and chemical properties of Au NCs. A delicate ligand design in Au NCs (or other metal NCs) needs to consider the covalent bonds between ligands and gold atoms (e.g., gold-sulfur (Au-S) and gold-phosphorus (Au-P) bond), the physics forces between ligands (e.g., hydrophobic and van der Waals forces), and the ionic forces between the functional groups of ligands (e.g., carboxylic (COOH) and amine group (NH2 )); which form the underlying chemistry and discussion focus of this review article. Here, detailed discussions on the effects of surface ligands (e.g., thiolate, phosphine, and alkynyl ligands; or hydrophobic and hydrophilic ligands) on the synthesis, structures, and properties of Au NCs; highlighting the design principles in the surface engineering of Au NCs for diverse emerging applications, are provided.


Gold , Metal Nanoparticles , Ligands
5.
Angew Chem Int Ed Engl ; 57(35): 11273-11277, 2018 Aug 27.
Article En | MEDLINE | ID: mdl-30010231

The emergence of thiolated metal nanoclusters provides opportunities to identify significant and unprecedented phenomena because they are at quantum sizes and can be characterized with X-ray crystallography. Recently silver nanoclusters have received extensive interest owing to their merits, such as low-cost and rich properties. Herein, a thiolated silver nanocluster [Ag46 S7 (SPhMe2 )24 ]NO3 (Ag46 for short) with a face-centered cubic (fcc) structure was successfully synthesized and structurally resolved by X-ray analysis. Most importantly, interstitial sulfur was found in the lattice void of Ag46 without lattice distortion or expansion, indicating that the classic theory of interstitial metal solid solutions might be not applicable at quantum size. Furthermore, unprecedented chemical bonds and unique structural features (such as asymmetrically coordinated µ4 -S) were found in Ag46 and might be related to the interstitial sulfur, which is supported by natural population analyses.

6.
Dalton Trans ; 47(32): 11097-11103, 2018 Aug 14.
Article En | MEDLINE | ID: mdl-30040107

Three sizes of atomically precise tiara-like structural Nin(SR)2n (n = 4, 5 and 6) are co-synthesized by a one-pot method and isolated using thin layer chromatography. The molecular formulas of Ni5(SR)10 and Ni6(SR)12 are determined using matrix-assisted laser desorption ionization mass spectrometry, and the tiara-like structures of Ni4(SR)8 and Ni6(SR)12 are proved using single-crystal X-ray crystallography. Nuclear magnetic resonance shows that Ni5(SR)10 has a similar tiara-like structure too. The electrochemical gap enlarges with the increase of the cluster size, which agrees with the calculated HOMO-LUMO gap and optical gap by TD-DFT, but the experimental optical gap is GO(Ni4(SR)8) > GO(Ni6(SR)12) > GO(Ni5(SR)10) due to Ni4(SR)8 owning a pseudo-optical gap at 2.0 eV.

7.
J Phys Chem Lett ; 9(1): 204-208, 2018 Jan 04.
Article En | MEDLINE | ID: mdl-29258309

Surface single-atom tailoring of a gold nanoparticle, that is, adding, removing, or replacing one surface atom on a structure-resolved nanoparticle in a controlled manner, is very exciting yet challenging and has not been hitherto achieved. Herein we report the first realization of the introduction of a single sulfur atom onto the surface of the structure-unraveled Au60S6(SCH2Ph)36 nanoparticle. Single-crystal X-ray crystallography reveals that the as-obtained nanoparticle consists of one Au17 kernel protected by one Au20S3(SCH2Ph)18 and one unprecedented Au23S4(SCH2Ph)18 motif with the introduced sulfur atom included as a tetrahedral-coordinated µ4-S. The introduced sulfur leads to the changes of both internal structure and crystallographic arrangement. Unlike the case of 6HLH arrangement in Au60S6(SCH2Ph)36 crystals, the "ABAB" arrangement in Au60S7(SCH2Ph)36 crystals enhances the solid photoluminescence of amorphous Au60S7(SCH2Ph)36 and brings a slight redshift of the maximum emission. The extensive near-infrared emission provides Au60S7(SCH2Ph)36 potential applications in some fields such as anticounterfeiting, imaging, etc.

8.
Chemistry ; 23(72): 18187-18192, 2017 Dec 22.
Article En | MEDLINE | ID: mdl-29034569

Double-crown Ni, Pd, or Pt nanoclusters have attracted extensive interests due to their aesthetic structure and intriguing properties. However, their doping by other metals remains unknown until now. Herein, Pd4 (PET)8 and Pd5 (PET)10 (PET: SCH2 CH2 Ph) were successfully doped with gold and the doped nanoclusters were characterized by using multiple techniques such as mass spectrometry and X-ray crystallography. It is revealed that in the doping not one but two gold atoms replace one Pd with the other double-crown structure essentially unchanged, and the gold-doping results in the blue-shift of the maximum visible absorption, the increase of optical energy gap and the reduction of anti-aromaticity of monometal Pd nanoclusters. Importantly, it is found that Au4 Pd2 (PET)8 nanocluster bears chirality originating from not only the helixed Au4 Pd2 S8 framework, but also unanimous R or S configuration of sulfur atoms in the enantiomer. For the latter chirality origin, it was not previously reported or proposed. Au4 Pd2 (PET)8 reported here also represents the smallest chiral bimetal nanocluster so far to the best of our knowledge. This work advances one step toward both the tailoring of group 10 metal nanoclusters by doping and the understanding of chirality origin for metal nanoclusters.

9.
Dalton Trans ; 46(38): 12964-12970, 2017 Oct 14.
Article En | MEDLINE | ID: mdl-28932839

A series of tiara like structural Pdn(SR)2n (5 ≤n≤ 20) nanoclusters were synthesized by using a modified Brust-Schiffrin route and isolated via thin layer chromatography, and further measured using MALDI-MS. A new crystal structure of tiara like structural Pd6(SC2H4Ph)12 was determined by single-crystal X-ray crystallography. The atomic distance of PdPd increased and the Pd-S bond length decreased with the increase in the n value in the optimized structure of Pdn(SR)2n (5 ≤n≤ 10), which were optimized by density functional theory at the B3LYP level. All these 16 Pdn(SR)2n nanoclusters exhibit weak emission at 620 nm with single band excitation at around 268 nm. The origin of emission of this series of clusters could be illustrated by using a ligand to metal charge transfer model.

10.
Nat Commun ; 8: 14739, 2017 03 24.
Article En | MEDLINE | ID: mdl-28337982

Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate µ4-S atoms not previously reported in the Au-S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au-S bonding and solid photoluminescence of gold nanoclusters.

11.
Nanoscale ; 9(11): 3742-3746, 2017 Mar 17.
Article En | MEDLINE | ID: mdl-28134388

Studying the kernel evolution pattern of gold nanoclusters is intriguing but challenging due to the difficulty of precise size control and structure resolution. Herein, we successfully synthesized two novel gold nanoclusters, Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26 (S-c-C6H11: cyclohexanethiolate), and resolved their structures. Interestingly, it was found that the kernel evolves from Au28(S-c-C6H11)20 to Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26 in a novel fashion: alternate single-stranded evolution at both ends, which is remarkably different from the reported double-stranded growth at the bottom for the 4-tert-butylbenzenethiolate (TBBT)-protected nanocluster series. This work illustrates the variety of kernel evolution patterns and the directionality of the ligands with respect to the evolution of the kernel. In addition, differential pulse voltammetry (DPV) revealed that the electrochemical gap between the first oxidation and the first reduction potential decreases as the size increases from Au28(S-c-C6H11)20 to Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26.

12.
Anal Chem ; 88(23): 11297-11301, 2016 12 06.
Article En | MEDLINE | ID: mdl-27934125

"Size-focusing" is a well-recognized process and widely employed for the synthesis of atomically monodisperse metal nanoclusters. However, quantitatively monitoring the size-focusing of Au nanoclusters has not been achieved yet, and the in-depth understanding of the size focusing is far from completed. Herein, we introduce a facile, cheap, and powerful tool, preparative thin-layer chromatography (PTLC), to quantitatively track the size-focusing process, to reveal that mainly ∼3 nm nanoparticles promote the transformation from Au44(TBBT)28 to Au36(TBBT)24 (where TBBT is 4-tert-butylbenzenethiolate) and to improve the syntheses of Au44(TBBT)28 and Au36(TBBT)24. Our work further demonstrates the usefulness of PTLC in nanocluster research and advances one step toward understanding the "size-focusing" process of nanoclusters.

13.
Chem Commun (Camb) ; 52(81): 12036-12039, 2016 Oct 04.
Article En | MEDLINE | ID: mdl-27711397

Herein, we report the intriguing structure, optical absorption and electrochemical properties of the transition-sized Au92(TBBT)44 (Au92 for short, TBBT = 4-tert-butylbenzenethiolate) nanoparticle. An interesting observation is the 4H phase array of Au92 nanoparticles in the unit cells of single crystals.

14.
Angew Chem Int Ed Engl ; 55(38): 11567-71, 2016 09 12.
Article En | MEDLINE | ID: mdl-27529838

The structural features that render gold nanoclusters intrinsically fluorescent are currently not well understood. To address this issue, highly fluorescent gold nanoclusters have to be synthesized, and their structures must be determined. We herein report the synthesis of three fluorescent Au24 (SR)20 nanoclusters (R=C2 H4 Ph, CH2 Ph, or CH2 C6 H4 (t) Bu). According to UV/Vis/NIR, differential pulse voltammetry (DPV), and X-ray absorption fine structure (XAFS) analysis, these three nanoclusters adopt similar structures that feature a bi-tetrahedral Au8 kernel protected by four tetrameric Au4 (SR)5 motifs. At least two structural features are responsible for the unusual fluorescence of the Au24 (SR)20 nanoclusters: Two pairs of interlocked Au4 (SR)5 staples reduce the vibration loss, and the interactions between the kernel and the thiolate motifs enhance electron transfer from the ligand to the kernel moiety through the Au-S bonds, thereby enhancing the fluorescence. This work provides some clarification of the structure-fluorescence relationship of such clusters.

15.
J Am Chem Soc ; 138(33): 10425-8, 2016 08 24.
Article En | MEDLINE | ID: mdl-27490914

The 18-electron shell closure structure of Au nanoclusters protected by thiol ligands has not been reported until now. Herein, we synthesize a novel nanocluster bearing the same gold atom number but a different thiolate number as another structurally resolved nanocluster Au44(TBBT)28 (TBBTH = 4-tert-butylbenzenelthiol). The new cluster was determined to be Au44(2,4-DMBT)26 (2,4-DMBTH = 2,4-dimethylbenzenethiol) using multiple techniques, including mass spectrometry and single crystal X-ray crystallography (SCXC). Au44(2,4-DMBT)26 represents the first 18-electron closed-shell gold nanocluster. SCXC reveals that the atomic structure of Au44(2,4-DMBT)26 is completely different from that of Au44(TBBT)28 but is similar to the structure of Au38Q. The arrangement of staples (bridging thiolates) and part of the Au29 kernel atom induces the chirality of Au44(2,4-DMBT)26. The finding that a small portion of the gold kernel exhibits chirality is interesting because it has not been previously reported to the best of our knowledge. Although Au44(2,4-DMBT)26 bears an 18-electron shell closure structure, it is less thermostable than Au44(TBBT)28, indicating that multiple factors contribute to the thermostability of gold nanoclusters. Surprisingly, the small difference in Au/thiolate molar ratio between Au44(2,4-DMBT)26 and Au44(TBBT)28 leads to a dramatic distinction in Au 4f X-ray photoelectron spectroscopy, where it is found that the charge state of Au in Au44(2,4-DMBT)26 is remarkably more positive than that in Au44(TBBT)28 and even slightly more positive than the charge states of gold in Au-(2,4-DMBT) or Au-TBBT complexes.

16.
Chem Commun (Camb) ; 52(64): 9873-6, 2016 Aug 02.
Article En | MEDLINE | ID: mdl-27379360

Herein we report three important results of widespread interest, which are (1) the crystal structure of [Au24Pt(PET)18](0), (2) the crystal structure of [Au24Pd(PET)18](0) and (3) the main source of magnetism in [Au25(PET)18](0).

17.
Sci Rep ; 5: 16628, 2015 Nov 16.
Article En | MEDLINE | ID: mdl-26567806

Tiara-like thiolated group 10 transition metal (Ni, Pd, Pt) nanoclusters have attracted extensive interest due to their fundamental scientific significance and potential application in a number of fields. However, the properties (e.g. the absorption) evolution with the ring size's increase was not investigated so far to our best knowledge, due to the challenge of obtaining a series of nanocluster analogues. Herein, we successfully synthesized, isolated and identified a family of [Pd(SC2H4Ph)2]n nanoclusters (totally 17 novel clusters, n = 4-20). Their structures were determined to be tiara-like by single crystal X-ray crystallography together with theoretical calculation; their formation mechanism was proposed to be a substitution-polycondensation-ring-closure process based on experimental observations. All of these clusters are rather robust (anti-reductive and anti-oxidative) owing to their tiara-like structures with large HOMO-LUMO gaps. Finally, the optical and electrochemical evolution with the increase of ring size was investigated, and it is found that both optical and electrochemical gaps have a "turning point" at a size corresponding to n = 8 for [Pd(SR)2]n nanoclusters.

18.
Nano Lett ; 15(2): 1281-7, 2015 Feb 11.
Article En | MEDLINE | ID: mdl-25580617

Alloy nanoparticles with atomic monodispersity is of importance for some fundamental research (e.g., the investigation of active sites). However, the controlled preparation of alloy nanoparticles with atomic monodispersity has long been a major challenge. Herein, for the first time a unique method, antigalvanic reduction (AGR), is introduced to synthesize atomically monodisperse Au25Ag2(SC2H4Ph)18 in high yield (89%) within 2 min. Interestingly, the two silver atoms in Au25Ag2(SC2H4Ph)18 do not replace the gold atoms in the precursor particle Au25(SC2H4Ph)18 but collocate on Au25, which was supported by experimental and calculated results. Also, the two silver atoms are active to play roles in stabilizing the alloy nanoparticle, triggering the nanoparticle fluorescence and catalyzing the hydrolysis of 1,3-diphenylprop-2-ynyl acetate.

...