Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
mSystems ; : e0039924, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934545

ABSTRACT

The skin microbiome plays a pivotal role in human health by providing protective and functional benefits. Furthermore, its inherent stability and individual specificity present novel forensic applications. These aspects have sparked considerable research enthusiasm among scholars across various fields. However, the selection of specific 16S rRNA hypervariable regions for skin microbiome studies is not standardized and should be validated through extensive research tailored to different research objectives and targeted bacterial taxa. Notably, third-generation sequencing (TGS) technology leverages the full discriminatory power of the 16S gene and enables more detailed and accurate microbial community analyses. Here, we conducted full-length 16S sequencing of 141 skin microbiota samples from multiple human anatomical sites using the PacBio platform. Based on this data, we generated derived 16S sub-region data through an in silico experiment. Comparisons between the 16S full-length and the derived variable region data revealed that the former can provide superior taxonomic resolution. However, even with full 16S gene sequencing, limitations arise in achieving 100% taxonomic resolution at the species level for skin samples. Additionally, the capability to resolve high-abundance bacteria (TOP30) at the genus level remains generally consistent across different 16S variable regions. Furthermore, the V1-V3 region offers a resolution comparable with that of full-length 16S sequences, in comparison to other hypervariable regions studied. In summary, while acknowledging the benefits of full-length 16S gene analysis, we propose the targeting of specific sub-regions as a practical choice for skin microbial research, especially when balancing the accuracy of taxonomic classification with limited sequencing resources, such as the availability of only short-read sequencing or insufficient DNA.IMPORTANCESkin acts as the primary barrier to human health. Considering the different microenvironments, microbial research should be conducted separately for different skin regions. Third-generation sequencing (TGS) technology can make full use of the discriminatory power of the full-length 16S gene. However, 16S sub-regions are widely used, particularly when faced with limited sequencing resources including the availability of only short-read sequencing and insufficient DNA. Comparing the 16S full-length and the derived variable region data from five different human skin sites, we confirmed the superiority of the V1-V3 region in skin microbiota analysis. We propose the targeting of specific sub-regions as a practical choice for microbial research.

2.
Front Pharmacol ; 15: 1382924, 2024.
Article in English | MEDLINE | ID: mdl-38741592

ABSTRACT

Background: Atorvastatin is a commonly prescribed medication for the prevention of cardiovascular diseases. Recent observational studies have suggested a potential association between atorvastatin use and the occurrence of Erectile Dysfunction (ED). In this study, we aimed to explore the relationship between atorvastatin and ED using real-world data from the FAERS database and employed Mendelian randomization to assess causality. Methods: To evaluate the disproportionality of atorvastatin in relation to ED, we conducted several pharmacovigilance analyses, including odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence propagation neural network (BCPNN), and gamma-Poisson contractile apparatus (GPS). Additionally, we employed Mendelian randomization to investigate the causal relationship between atorvastatin and ED. Results: Pharmacovigilance disproportionality analysis revealed a significant association between atorvastatin and ED, as indicated by the following results: ROR [3.707078559, 95% CI (3.33250349, 4.123756054)], PRR [3.702969038, χ2 (669.2853829)], IC [1.870490139, IC025 (1.702813857)], and EBGM [3.656567867, EBGM05 (3.28709656)]. Furthermore, the two-sample Mendelian randomization analysis provided evidence supporting a causal relationship between atorvastatin use and ED, with an inverse variance weighted estimate of ß = 3.17 (OR = 23.91, p = 0.02 < 0.05). Conclusion: Based on comprehensive analyses incorporating pharmacovigilance and Mendelian randomization, our findings suggest that atorvastatin use is associated with an increased risk of ED and indicate a causal relationship. These results emphasize the importance of considering potential adverse effects, such as ED, when prescribing atorvastatin for cardiovascular disease prevention. Further research and clinical monitoring are warranted to better understand the underlying mechanisms and develop appropriate strategies to mitigate this side effect.

3.
Forensic Sci Res ; 9(2): owad058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651135

ABSTRACT

Short tandem repeats (STRs) are the most common genetic markers in forensic and human population genetics due to their high polymorphism, rapid detection, and reliable genotyping. To adapt the rapid growth of forensic DNA database and solve problems in disputed cases, a panel of 23 autosomal STR loci with high discriminating ability was constructed recently. The Tai-Kadai-speaking Gelao is the most ancient indigenous minority in Guizhou province, however, the forensic efficiency and population genetic structure remain poorly explored. Here, 490 Guizhou Gelao individuals from Southwest China were genotyped with the panel of 23 STRs using the Huaxia Platinum Kit. A total of 265 alleles were screened. The combined discrimination power and the combined probability of paternity were 0.9999 and 0.9999, respectively. This indicated the 23 loci had higher discrimination power in Guizhou Gelao and could be applied to forensic practice. Comprehensive population structures with reference populations from China and abroad using the neighbour-joining phylogenetic tree (N-J tree), multidimensional scaling, principal component analysis and heatmap demonstrated that Guizhou Gelao was genetically closer to Guizhou Han than other populations. Moreover, our results showed that a complex phylogenetic model was influenced by ethnic, geographic, and linguistic factors. Key points: The first batch of genetic data for 23 autosomal STRs in 490 Geolao individuals from Guizhou was provided.The 23 STR panel can afford high genetic polymorphisms and discrimination power and can be efficiently applied to forensic practice in Guizhou Gelao population.A complex phylogenetic model influenced by ethnic, geographic, and linguistic factors was uncovered.

4.
J Integr Neurosci ; 23(4): 76, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38682216

ABSTRACT

BACKGROUND: There are current clinical observations that atorvastatin may promote subdural hematoma resorption. We aimed to assess the causal effects of lipid-lowering agents 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, Proproteinconvertase subtilisin/kexin type 9 (PCSK9) inhibitors and Niemann-Pick C1-like protein 1 (NPC1L1) inhibitors on traumatic subdural hematomas. METHODS: We used genetic instruments to proxy lipid-lowering drug exposure, with genetic instruments being genetic variants within or near low-density lipoprotein (LDL cholesterol)-associated drug target genes. These were analyzed by using a two-sample Mendelian randomization (MR) study. RESULTS: A causal relationship was found between HMGCR inhibitors and traumatic subdural hematoma (Inverse variance weighted (ß = -0.7593341 (Odds Ratio (OR) = 0.4679779), p = 0.008366947 < 0.05)). However, no causal relationship was found between PCSK9 inhibitors and NPC1L1 inhibitors and traumatic subdural hematoma (PCSK9 inhibitors: Inverse variance weighted (ß = 0.23897796 (OR = 1.2699505), p = 0.1126327), NPC1L1 inhibitors: Inverse variance weighted (ß = -0.02118558 (OR = 0.9790373), p = 0.9701686)). Sensitivity analysis of the data revealed good stability of the results. CONCLUSIONS: This two-sample MR study suggests a potential causal relationship between HMGCR inhibition (atorvastatin) and traumatic subdural hemorrhage.


Subject(s)
Hydroxymethylglutaryl CoA Reductases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hematoma, Subdural , PCSK9 Inhibitors , Membrane Transport Proteins/genetics , Membrane Proteins/genetics , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/pharmacology , Atorvastatin/adverse effects , Atorvastatin/administration & dosage , Atorvastatin/pharmacology
5.
Front Pharmacol ; 15: 1278442, 2024.
Article in English | MEDLINE | ID: mdl-38327980

ABSTRACT

Background: Diazepam, one of the benzodiazepines, is widely used clinically to treat anxiety, for termination of epilepsy, and for sedation. However, the reports of its adverse events (AEs) have been numerous, and even fatal complications have been reported. In this study, we investigated the AEs of diazepam based on real data from the U.S. Food and Drug Administration (FDA) adverse event reporting system (FAERS). Methods: Disproportionality in diazepam-associated AEs was assessed through the calculation of reporting odds ratios (RORs), proportional reporting ratios (PRRs), Bayesian confidence-propagation neural networks (BCPNNs), and gamma-Poisson shrinkage (GPS). Results: Among the 19,514,140 case reports in the FAERS database, 15,546 reports with diazepam as the "principal suspect (PS)" AEs were identified. Diazepam-induced AEs occurred targeting 27 system organ categories (SOCs). Based on four algorithms, a total of 391 major disproportionate preferred terms (PTs) were filtered out. Unexpectedly significant AEs such as congenital nystagmus, developmental delays, and rhabdomyolysis were noted, which were not mentioned in the drug insert. Conclusion: Our study identified potential signals of new AEs that could provide strong support for clinical monitoring and risk identification of diazepam.

6.
Front Mol Neurosci ; 16: 1153230, 2023.
Article in English | MEDLINE | ID: mdl-38155913

ABSTRACT

Purpose: Currently, there is a shortage of the protein biomarkers for classifying spinal cord injury (SCI) severity. We attempted to explore the candidate biomarkers for predicting SCI severity. Methods: SCI rat models with mild, moderate, and severe injury were constructed with an electro-mechanic impactor. The behavior assessment and pathological examinations were conducted before and after SCI. Then, quantitative liquid chromatography-mass spectrometry (LC-MS/MS) was performed in spinal cord tissues with different extents of injury. The differentially expressed proteins (DEPs) in SCI relative to controls were identified, followed by Mfuzz clustering, function enrichment analysis, and protein-protein interaction (PPI) network construction. The differential changes of candidate proteins were validated by using a parallel reaction monitoring (PRM) assay. Results: After SCI modeling, the motor function and mechanical pain sensitivity of SCI rats were impaired, dependent on the severity of the injury. A total of 154 DEPs overlapped in the mild, moderate, and severe SCI groups, among which 82 proteins were classified in clusters 1, 2, 3, 5, and 6 with similar expression patterns at different extents of injury. DEPs were closely related to inflammatory response and significantly enriched in the IL-17 signaling pathway. PPI network showed that Fgg (Fibrinogen gamma chain), Fga (Fibrinogen alpha chain), Serpinc1 (Antithrombin-III), and Fgb (Fibrinogen beta chain) in cluster 1 were significant nodes with the largest degrees. The upregulation of the significant nodes in SCI samples was validated by PRM. Conclusion: Fgg, Fga, and Fgb may be the putative biomarkers for assessing the extent of SCI.

7.
Microorganisms ; 11(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764093

ABSTRACT

Pachymaran (PCP), the major medicinal constituent of Poria cocos, has a regulatory effect on immunosuppressive lung injury, but its mechanism of action with respect to gut microorganisms and their metabolites is not clear. The aim of this study was to investigate the protective effect of PCP against immunosuppressive lung injury caused by cyclosporine A (CsA), and to reveal its possible mechanism of action via the comprehensive analysis of 16S rRNA and LC-MS. We demonstrated that PCP was effective at alleviating CsA-induced immunosuppressive lung injury by restoring the organ indices and lung tissue morphology and structure. PCP significantly altered the composition of the gut and lung microbiota in mice with CsA-induced immunosuppressive lung injury by increasing the number of beneficial bacteria from the Eubacterium nodatum group, Eubacterium ventriosum group, Akkermansia, and Ruminococcus, and reducing the pathogenic Rikenellaceae RC9 gut group to fulfill its immunomodulatory role. In lung tissue microecology, PCP intervention significantly reduced the abundance of Chryseobacterium, Lawsonella, Paracoccus, and Sediminibacterium and increased the abundance of Alloprevotella. The LC-MS results showed that PCP alleviated the CsA-induced immunosuppression of lung tissue injury. The model serum metabolite Americine decreased the expression of PC(O-18:1(4Z)/0:0). Our results suggest that PCP may be involved in regulating the composition, function, and metabolism of the gut and lung microbiota to reverse CsA-induced immunosuppressive lung injury.

8.
Ann Hum Biol ; 50(1): 345-350, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37431941

ABSTRACT

BACKGROUND: Short tandem repeats (STR) are highly polymorphic DNA markers utilised in forensic personal identification and human population genetic research. Guizhou Tujia is one of the ancient minority groups in southwest China, however, the population has not been studied using the highly discriminating 23 STR Huaxia Platinum Kit. AIM: To obtain genetic data from 23 autosomal STRs in Guizhou Tujia and examine the population's relationship with others. SUBJECTS AND METHODS: A total of 480 individuals from the Guizhou Tujia population were analysed using 23 STR loci of Huaxia Platinum Kit. Allele frequencies and forensic parameters were estimated. Population genetic relationships were calculated by Nei's genetic distances and visualised using a variety of biostatistical methods. RESULTS: A total of 264 alleles were found, with allelic frequencies ranging from 0.0010 to 0.5104. The combined discrimination power (CDP) and the combined probability of paternity (CPE) of 23 STR loci were 0.9999999999999999999999999996 and 0.999999999710422, respectively. Guizhou Tujia showed closer genetic relationships with Hubei Tujia, Guizhou Gelao, and Guizhou Miao than with other populations. CONCLUSION: We first obtained the population genetic data of Guizhou Tujia using the 23 STR system and demonstrated its value in forensic applications. Comprehensive population comparisons showed an evident genetic affinity pattern between populations that are geographically, ethnically and linguistically related.


Subject(s)
Ethnic and Racial Minorities , Minority Groups , Humans , Phylogeny , Ethnicity/genetics , Platinum , Microsatellite Repeats/genetics , Genetic Variation
9.
Discov Oncol ; 14(1): 72, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37204526

ABSTRACT

Breast cancer is the tumor with the highest incidence in women worldwide. According to research, the poor prognosis of breast cancer is closely related to abnormal glucose metabolism in tumor cells. Changes in glucose metabolism in tumor cells are an important feature. When sufficient oxygen is available, cancer cells tend to undergo glycolysis rather than oxidative phosphorylation, which promotes rapid proliferation and invasion of tumor cells. As research deepens, targeting the glucose metabolism pathway of tumor cells is seen as a promising treatment. Non-coding RNAs (ncRNAs), a recent focus of research, are involved in the regulation of enzymes of glucose metabolism and related cancer signaling pathways in breast cancer cells. This article reviews the regulatory effect and mechanism of ncRNAs on glucose metabolism in breast cancer cells and provides new ideas for the treatment of breast cancer.

10.
Transl Oncol ; 29: 101618, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36628881

ABSTRACT

This study aimed to identify potential biomarkers for non-small cell lung cancer (NSCLC) and analyze the role of immune cell infiltration in NSCLC. R software was used to screen differentially expressed genes (DEGs) from NSCLC datasets obtained from the Gene Expression Omnibus (GEO) database, and functional correlation analysis was performed. The machine learning algorithms were used to screen the potential biomarkers of NSCLC. The diagnostic values were assessed through receiver operating characteristic (ROC) curves. The protein and mRNA expression levels of potential biomarkers were verified based on the Human Protein Atlas (HPA) database and qRT-PCR. CIBERSORT was used to evaluate the infiltration of immune cells in NSCLC tissues, and the correlation between potential biomarkers and infiltrated immune cell was analyzed. Finally, specific siRNAs were utilized to reduce the GDF10, NCKAP5, and RTKN2 expression in A549 and H1975 cells. The proliferation ability of A549 and H1975 cells was detected by MTT assay. A total of 848 upregulated DEGs and 1308 downregulated DEGs were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the DEGs were mainly related to cell division. Disease ontology (DO) enrichment analysis showed that the diseases with these DEGs were mainly lung diseases, including NSCLC. In addition,three potential biomarkers were identified: GDF10, NCKAP5, and RTKN2. Immune cell infiltration analysis showed that resting NK cells, activated dendritic cells, and Tregs may be involved in the pathogenesis of NSCLC. Meanwhile, GDF10, NCKAP5, and RTKN2 were negatively correlated with Tregs and naïve B cells but were positively correlated with activated dendritic cells and resting NK cells. Immunohistochemical staining showed that the expression of GDF10, NCKAP5, and RTKN2 in the lung tissue of patients with NSCLC was lower than that of normal lung tissue. qRT-PCR also confirmed that the mRNA expression of three biomarkers in NSCLC cell lines A549 and H1975 were significantly lower than those in human normal lung epithelial cells BEAS-2B. An MTT assay showed that GDF10, NCKAP5, and RTKN2 knockdown significantly promoted the proliferation of A549 and H1975 cells. The in vitro experiments showed that GDF10, NCKAP5, and RTKN2 played the inhibitory effects on NSCLC cell lines proliferation. Hence, GDF10, NCKAP5, and RTKN2 can be used as diagnostic biomarkers for NSCLC.

11.
Front Immunol ; 14: 1298416, 2023.
Article in English | MEDLINE | ID: mdl-38259457

ABSTRACT

Context: Ma Xing Shi Gan Decoction (MXSGD) is a traditional remedy for treating lung injuries that was developed by the Typhoid and Fever School of Pharmaceutical Biology. It has antitussive and expectorant effects, anti-inflammatory, antiviral, regulates the body's immunity, etc. Aim: The aim of this study is to investigate whether MXSGD can ameliorate cyclosporine A (CsA)-induced hypoimmunity lung injury by regulating microflora metabolism. Methods: Establishment of a model for CsA-induced hypoimmunity lung injury. Using 16S rRNA high-throughput sequencing and LC-MS, the effects of MXSGD on gut flora and lung tissue microecology of mice with CsA-induced hypoimmunity were investigated. Results: MXSGD was able to preserve lung tissue morphology and structure, reduce serum inflammatory marker expression and protect against CsA-induced lung tissue damage. Compared to the model, MXSGD increased beneficial gut bacteria: Eubacterium ventriosum group and Eubacterium nodatum group; decreased intestinal pathogens: Rikenellaceae RC9 intestinal group; reduced the abundance of Chryseobacterium and Acinetobacter, promoted the production of Lactobacillus and Streptococcus, and then promoted the lung flora to produce short-chain fatty acids. MXSGD was able to enhance the expression of serum metabolites such as Americine, 2-hydroxyhexadecanoylcarnitine, Emetine, All-trans-decaprenyl diphosphate, Biliverdin-IX-alpha, Hordatin A and N-demethyl mifepristone in the CsA-induced hypoimmunity lung injury model. Conclusion: MXSGD can restore gut and lung microbiota diversity and serum metabolite changes to inhibit inflammation, ameliorate CsA-induced hypoimmunity lung injury.


Subject(s)
Acinetobacter , Drugs, Chinese Herbal , Immunologic Deficiency Syndromes , Lung Injury , Animals , Mice , Lung Injury/chemically induced , Lung Injury/drug therapy , Cyclosporine , RNA, Ribosomal, 16S/genetics
12.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5306-5315, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472038

ABSTRACT

Based on Janus kinase 1/2-signal transducer and activator of transcription 1(JAK1/2-STAT1) signaling pathway, this study explored the immune mechanism of Maxing Shigan Decoction in alleviating the lung tissue and colon tissue damage in mice infected with influenza virus. The influenza virus infection was induced in mice by nasal drip of influenza virus. The normal group, model group, oseltamivir group, antiviral granule group, and Maxing Shigan Decoction group were designed. After intragastric administration of corresponding drugs or normal saline for 3 or 7 days, the body mass was measured, and lung index, spleen index, and thymus index were calculated. Based on hematoxylin-eosin(HE) staining, the pathological changes of lung tissue and colon tissue were observed. Enzyme-linked immunosorbent assay(ELISA) was used to detect serum levels of inflammatory factors interleukin-8(IL-8) and interferon-γ(IFN-γ), Western blot and real-time quantitative polymerase chain reaction(RT-qPCR) to determine the protein and mRNA levels of JAK1, JAK2, STAT1, interferon regulatory factor 9(IRF9), and IFN-γ in lung tissue and colon tissue. The results showed that after 3 and 7 days of administration, the body mass, spleen index, and thymus index were lower(P<0.05 or P<0.01), and the lung index was higher(P<0.01) in the model group than in the normal group. Moreover, the model group showed congestion, edema, and infiltration of a large number of lymphocytes and macrophages in the lung tissue, irregular structure of colon mucosa, ulceration and shedding of epithelial cells, and infiltration of a large number of inflammatory cells. The model group had higher levels of serum IFN-γ(P<0.01), higher protein and mRNA expression of JAK1, JAK2, STAT1, IRF9, IFN-γ in lung tissue(P<0.05 or P<0.01), higher level of JAK2 protein in colon tissue(P<0.01), and higher protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) than the normal group. Compared with the model group, Maxing Shigan Decoction group had high body mass, spleen index, and thymus index(P<0.05 or P<0.01), low lung index(P<0.05 or P<0.01), and significant alleviation of pathological injury in lung and colon. Moreover, lower serum level of IFN-γ(P<0.05 or P<0.01), protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue(P<0.05 or P<0.01), JAK2 protein level in colon tissue(P<0.01), and protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) were observed in the Maxing Shigan Decoction group than in the model group. After 3 days of administration, the level of serum IL-8 in the model group was significantly higher than that in the normal group(P<0.01), and the level in the Maxing Shigan Decoction group was significantly reduced(P<0.01). In conclusion, Maxing Shigan Decoction can significantly up-regulate body mass, spleen index, and thymus index, down-regulate lung index, reduce the levels of IL-8 and IFN-γ, and down-regulate protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue and protein and mRNA levels of JAK2, STAT1, and IRF9 in colon tissue, and alleviate pathological damage of lung tissue and colon tissue. The mechanism is the likelihood that it inhibits the activation of JAK1/2-STAT1 signaling pathway to alleviate the damage to lung and colon tissue damage.


Subject(s)
Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Mice , Animals , Humans , Janus Kinase 1/genetics , STAT1 Transcription Factor/genetics , Interleukin-8 , Signal Transduction , Interferon-gamma , Lung , RNA, Messenger , Colon
13.
Jpn J Clin Oncol ; 52(8): 869-879, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35642571

ABSTRACT

BACKGROUND: The incidence of sinonasal adenocarcinoma is low, and there are few studies on survival and prognosis. Therefore, we aim to develop and validate a prognostic model for predicting the overall survival of sinonasal adenocarcinoma and provide guidance for clinical management. METHODS: Patients who were diagnosed as sinonasal adenocarcinoma through Surveillance, Epidemiology, and End Results database between 1975 and 2015 were randomly divided into a training group and validation group. Univariate, multivariate survival analysis was performed to screen independent survival factors. A nomogram was established to predict the overall survival rate of sinonasal adenocarcinoma. Receiver operating characteristic curve and calibration plot were performed to verify the discrimination and accuracy of the model. A decision curve analysis was performed to verify the clinical applicability of the model. RESULTS: A total of 423 patients with sinonasal adenocarcinoma were randomly divided into training group (n = 299) and verification group (n = 124). We established and verified the Nomo map including age, marriage, grade, surgery and tumour size. The c-index of Surveillance, Epidemiology, and End Results stage, T stage and this model are 0.635, 0.626 and 0.803, respectively. The survival rate of the high-risk group scored by this model was lower than that of the low-risk group (P < 0.001). Decision curve analysis shows that the model has advantages in predicting survival rates. CONCLUSION: Our model is considered to be a useful tool for predicting the overall survival of sinonasal adenocarcinoma, with good discrimination and clinical applicability. We hope that this model will help rhinologists to make clinical decisions and manage patients diagnosed with sinonasal adenocarcinoma.


Subject(s)
Adenocarcinoma , Paranasal Sinus Neoplasms , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Humans , Nomograms , Paranasal Sinus Neoplasms/mortality , Paranasal Sinus Neoplasms/surgery , Prognosis , SEER Program , Survival Rate
14.
J Oncol ; 2022: 1040116, 2022.
Article in English | MEDLINE | ID: mdl-37181789

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSC) is one of the most common malignancies, and identification of HNSC biomarkers is critical. LIM Domain And Actin Binding 1 (LIMA1) is involved in actin cytoskeleton regulation and dynamics. The role of LIMA1 in HNSC is unclear. This is the first study to investigate the expression of LIMA1 in HNSC patients and its prognostic value, potential biological functions, and impact on the immune system. Methods: Gene expression and clinicopathological analysis, enrichment analysis, and immune infiltration analysis were all based on data from The Cancer Genome Atlas (TCGA) with additional bioinformatics analysis. Statistical analysis was performed using TIMER and ssGSEA to analyze the immune response to LIMA1 expression in HNSCs. In addition, Gene Expression Omnibus (GEO), Kaplan-Meier(K-M) survival analysis, and data from the Human Protein Atlas (HPA) were used to validate the results. Results: LIMA1 played a key role as an independent prognostic factor in HNSC patients. GSEA found that LIMA1 is associated with promoting cell adhesion and suppressing immune function. LIMA1 expression was significantly correlated with infiltration of B cells, CD8+ T cells, CD4+ T cells, dendritic cells, and neutrophils and was coexpressed with immune-related genes and immune checkpoints. Conclusion: The expression of LIMA1 is increased in HNSC, and the high expression of LIMA1 is associated with poor prognosis. LIMA1 may affect tumor development by regulating tumor-infiltrating cells in the tumor microenvironment (TME). LIMA1 may be a potential target for immunotherapy.

15.
Fa Yi Xue Za Zhi ; 38(6): 733-738, 2022 Dec 25.
Article in English, Chinese | MEDLINE | ID: mdl-36914389

ABSTRACT

OBJECTIVES: To investigate the genetic polymorphism of InDel loci in SifalnDel 45plex system in the Han population in Jiangsu Province and the Mongolian population in Inner Mongolia, and to evaluate the effectiveness of the system in forensic medicine. METHODS: SifaInDel 45plex system was used for genotyping in blood samples of 398 unrelated individuals from the above two populations, and allele frequencies and population genetic parameters of the two populations were calculated respectively. Eight intercontinental populations in the gnomAD database were used as reference populations. The genetic distances between the two studied populations and eight reference populations were calculated based on the allele frequencies of 27 autosomal-InDels (A-InDels). The phylogenetic trees and multidimensional scaling (MDS) analysis diagrams were constructed accordingly. RESULTS: Among two studied populations, the 27 A-InDels and 16 X-InDels showed no linkage disequilibrium between each other and the allele frequency distributions were in Hardy-Weinberg equilibrium. The CDP of the 27 A-InDels in two studied populations were all higher than 0.999 999 999 9, and the CPEtrio were all less than 0.999 9. The CDP of the 16 X-InDels in Han in Jiangsu and Mongolian in Inner Mongolia female and male samples were 0.999 997 962, 0.999 998 389, and 0.999 818 940, 0.999 856 063, respectively. The CMECtrio were all less than 0.999 9. The results of population genetics showed that the Jiangsu Han nationality, Inner Mongolia Mongolian nationality and East Asian population clustered into one branch, showing closer genetic relationship. The other 7 intercontinental populations clustered into another group. And the above 3 populations displayed distant genetic relationships with the other 7 intercontinental populations. CONCLUSIONS: The InDels in the SifaInDel 45plex system have good genetic polymorphism in the two studied populations, which can be used for forensic individual identification or as an effective complement for paternity identification, and to distinguish different intercontinental populations.


Subject(s)
Genetics, Population , Polymorphism, Genetic , Humans , Phylogeny , Gene Frequency , Asian People/genetics , China , INDEL Mutation
16.
Digital Chinese Medicine ; (4): 222-232, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-974078

ABSTRACT

@#Objective To investigate the immunomodulatory effect of pachymaran on cyclosporine A (CsA)-induced lung injury in mice. Methods (i) Fifty male BALB/c mice were randomly divided into five groups (10 mice in each group): normal control (NC) group, 30, 45, and 60 mg/kg CsA groups, and lipopolysaccharide (LPS) group. Except for the NC group, other groups underwent CsA modeling. The NC group was treated with phosphate-buffered saline (PBS), the LPS group with 10 mg/kg LPS eight hours before mice euthanized, and the 30, 45, and 60 mg/kg CsA groups with corresponding doses of CsA for seven consecutive days. After treatment, the body and organ mass of each group were weighed, and the lung, thymus, and spleen indexes were calculated. Hematoxylin-Eosin (HE) staining was performed to observe histopathological changes in the lungs of the mice. The protein expression levels of interleukin (IL)-2 and IL-1β in the blood were detected using enzyme-linked immunosorbent assay (ELISA), and those of surfactant protein D (SP-D), IL-2, and IL-6 in lung tissues were detected by immunohistochemistry (IHC). The mRNA expression levels of SP-D, IL-1β, IL-6, and myeloperoxidase (MPO) in the lung tissues were detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). (ii) Another 60 BALB/c mice were divided into six groups (10 mice in each group) : NC group, model control (MC) group, 50, 100, and 200 mg/kg pachymaran groups, and polyinosinic-polycytidylic acid [poly(I:C)] group. Except for the NC group, other groups underwent 45 mg/kg CsA modeling. The NC and MC groups were treated with distilled water, the pachymaran groups with corresponding doses pachymaran, and the poly(I:C) group with 0.1 mg/kg poly(I:C) for seven days.The mice were euthanized to obtain tissues and serum for detection. Detection methods were identical to those described in (i) above. Results (i) CsA (30 mg/kg) increased the lung index of mice (P < 0.001), and decreased the spleen index (P < 0.01), thymus index (P < 0.05), and the serum level of IL-2 (P < 0.05). CsA (45 mg/kg) decreased the spleen, thymus indexes, and the serum level of IL-2 (P < 0.01) in mice, and increased the serum level of IL-1β (P < 0.05) and the protein level of lung SP-D (P <0.001). CsA (60 mg/kg) increased the lung index of mice (P < 0.01), the serum level of IL-1β (P < 0.05), the protein level of lung SP-D (P < 0.01), and the mRNA levels of lung MPO and SP-D ( P < 0.05), and decreased the thymus index of mice (P < 0.01). HE staining showed that 30, 45, and 60 mg/kg CsA, and LPS caused pathological changes in the lung tissue of mice. (ii) After pachymaran intervention in MC mice, the spleen and thymus indexes (P < 0.05) were increased in the 100 and 200 mg/kg pachymaran groups, and the lung index was decreased (P < 0.05). Moreover, 50 mg/kg pachymaran increased the thymus index (P < 0.05) and decreased the lung index (P < 0.01) in MC group. Pachymaran (50, 100, and 200 mg/kg) improved lung tissue injury, reduced the serum level of IL-1β (P < 0.001), and the mRNA levels of MPO and SP-D in lung tissues (P < 0.05) of mice. Pachymaran (100 mg/kg) increased the protein level of lung IL-2 (P < 0.01), decreased the protein level of lung SP-D (P < 0.01), and the mRNA level of IL-1β (P < 0.001) in the lung tissues of mice. Pachymaran (200 mg/kg) increased the serum level of IL-2 (P < 0.01) and lung IL-6 of mice (P < 0.05). Pachymaran (50 and 200 mg/kg) increased the mRNA level of IL-6 in the lung tissues of mice (P < 0.05). Conclusion While the immune function of mice was suppressed by CsA, the lung tissue was also damaged. Pachymaran can improve the immunosuppression induced by CsA and improve the lung tissue injury in immunosuppressed mice.

17.
PLoS One ; 14(1): e0210670, 2019.
Article in English | MEDLINE | ID: mdl-30677045

ABSTRACT

Oxidative stress has been considered as one of pathogenesis of brain damage led by epilepsy. Reducing oxidative stress can ameliorate brain damage during seizures. However, expression levels of important antioxidative enzymes such as thioredoxin-1 (TRX1), thioredoxin-like 1 protein (TXNL1) and thioredoxin reductase 1 (TXNRD1) during seizures have not been investigated. In this study, we examined protein and mRNA expression levels of TRX1, TXNL1 and TXNRD1 in different brain regions in PTZ induced seizure model mice. We found that protein expression levels of TRX1, TXNL1 and TXNRD1 are simultaneously up-regulated by 2- or 3-fold in the cortex of both acute and chronic seizure model mice. But there is no unified expression pattern change of these enzymes in the hippocampus, cerebellum and diencephalon in the seizure model mice. Less extent up-regulation of mRNA expression of these enzymes were also observed in the cortex of seizure mice. These data suggest that antioxidative enzymes may provide a protective effect against oxidative stress in the cortex during seizures.


Subject(s)
Kindling, Neurologic/metabolism , Seizures/metabolism , Thioredoxin Reductase 1/metabolism , Thioredoxins/metabolism , Animals , Disease Models, Animal , Kindling, Neurologic/genetics , Male , Mice , Seizures/genetics , Thioredoxin Reductase 1/genetics , Thioredoxins/genetics
18.
Mitochondrial DNA B Resour ; 4(2): 4061-4062, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-33366318

ABSTRACT

The complete mitochondrial genome of Acrossocheilus yunnanensis was determined in this study. It contained 13 protein-coding genes (PCGs), 22 tRNA, 2 rRNAs, and a control region with the base composition 31.47% A, 27.83% C, 24.65% T, and 16.05% G. Here we compared this newly determined mitogenome with another one from the same species reported before. The variable sites and the genetic distances between the two mitogenomes were 134 bp and 0.8%. Sixty-five variable sites occurred in the PCGs. The results from the phylogenetic analysis showed that the genus Acrossocheilus is not a monophyletic group and Acrossocheilus yunnanensis demonstrates a close relationship with Acrossocheilus monticola.

19.
Mitochondrial DNA B Resour ; 5(1): 344-345, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-33366549

ABSTRACT

The complete mitochondrial genome of Sinibotia superciliaris was determined in this study. It contained 13 protein-coding genes (PCGs), 22 tRNA, 2 rRNAs, and a control region with the base composition 31.57% A, 27.18% C, 25.52% T, and 15.74% G. Here we compared this newly determined mitogenome with another one from the same species reported before. The variable sites and the genetic distances between the two mitogenomes were 20 bp and 0.1%. 15 variable sites were occurred in the PCGs. The results from the phylogenetic analysis showed that the genus Sinibotia is a monophyletic group and S. superciliaris demonstrate a sister relationship with Sinibotia pulchra.

SELECTION OF CITATIONS
SEARCH DETAIL
...