Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Proc Natl Acad Sci U S A ; 121(37): e2316256121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39226366

ABSTRACT

Trajectory inference methods are essential for analyzing the developmental paths of cells in single-cell sequencing datasets. It provides insights into cellular differentiation, transitions, and lineage hierarchies, helping unravel the dynamic processes underlying development and disease progression. However, many existing tools lack a coherent statistical model and reliable uncertainty quantification, limiting their utility and robustness. In this paper, we introduce VITAE (Variational Inference for Trajectory by AutoEncoder), a statistical approach that integrates a latent hierarchical mixture model with variational autoencoders to infer trajectories. The statistical hierarchical model enhances the interpretability of our framework, while the posterior approximations generated by our variational autoencoder ensure computational efficiency and provide uncertainty quantification of cell projections along trajectories. Specifically, VITAE enables simultaneous trajectory inference and data integration, improving the accuracy of learning a joint trajectory structure in the presence of biological and technical heterogeneity across datasets. We show that VITAE outperforms other state-of-the-art trajectory inference methods on both real and synthetic data under various trajectory topologies. Furthermore, we apply VITAE to jointly analyze three distinct single-cell RNA sequencing datasets of the mouse neocortex, unveiling comprehensive developmental lineages of projection neurons. VITAE effectively reduces batch effects within and across datasets and uncovers finer structures that might be overlooked in individual datasets. Additionally, we showcase VITAE's efficacy in integrative analyses of multiomic datasets with continuous cell population structures.


Subject(s)
Deep Learning , Genomics , Single-Cell Analysis , Single-Cell Analysis/methods , Animals , Mice , Genomics/methods , Sequence Analysis, RNA/methods , Humans
2.
NPJ Precis Oncol ; 8(1): 189, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237596

ABSTRACT

Pathological complete response (pCR) serves as a critical measure of the success of neoadjuvant chemotherapy (NAC) in breast cancer, directly influencing subsequent therapeutic decisions. With the continuous advancement of artificial intelligence, methods for early and accurate prediction of pCR are being extensively explored. In this study, we propose a cross-modal multi-pathway automated prediction model that integrates temporal and spatial information. This model fuses digital pathology images from biopsy specimens and multi-temporal ultrasound (US) images to predict pCR status early in NAC. The model demonstrates exceptional predictive efficacy. Our findings lay the foundation for developing personalized treatment paradigms based on individual responses. This approach has the potential to become a critical auxiliary tool for the early prediction of NAC response in breast cancer patients.

3.
Talanta ; 281: 126859, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39270606

ABSTRACT

Controlling the position, size, and shape of pores is a limitation of traditional monolithic preparation methods. The application of 3D printing technology offers high customizability, allowing the precise printing of pore positions, sizes, and shapes according to the designer's 3D model. Herein, by using Projection Microstereolithography (PµSL), we prepared a 3D-printed monolithic array with post-modification of thiol-functionalized metal-organic framework (MOF), and combined it with inductively coupled plasma mass spectrometry (ICP-MS) for the online analysis of trace Cd and Pb in human urine. To achieve array monolithic microextraction, six 3D-printed monolithic columns were modified with thiol-functionalized MOF-808 (MOF-808-SH), and were then assembled in the 3D printed extraction device incorporating gas valve and scaffold. The MOF-808-SH modified 3D-printed monolithic column exhibits excellent extraction performance to Cd2+ and Pb2+ due to rich active adsorption sites and hierarchical porous structure, and has long life span (>100 reused times). Under the optimized conditions, the limits of detection (LODs) are 3.5 and 17.6 ng L-1 for Cd2+ and Pb2+, respectively, with the relative standard deviations of 4.9 % and 8.2 % (0.1 µg L-1, n = 7), and the sample throughput is 11 h-1. To validate the accuracy of the method, the method was used to determine Cd and Pb in Certified Reference Materials of freeze-dried human urine, the determined results agree well with the certified values. This method was also successfully applied to the determination of trace Cd and Pb in real human urine samples. The developed method offers low LODs, robust anti-interference capability, high sample throughput, long reuse cycles, and automation analysis, showing great potential for the analysis of trace heavy metals in biological samples.

4.
Food Chem ; 463(Pt 1): 141116, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39265408

ABSTRACT

Microbial contamination is the leading cause of food spoilage and food-borne disease. Here, we developed a multifunctional surface based on polylactic acid (PLA) bioplastic with antifouling and antibacterial properties via a facile dual-coating approach. The surface was designed with hierarchical micro/nano-scale roughness and low surface energy. Bactericidal agent polyhexamethylene guanidine hydrochloride (PHMG) was incorporated to endow the film with bactericidal activity. The film had good superhydrophobic, antifouling and antibacterial performance, with a water contact angle of 154.3°, antibacterial efficiency against E. coli and S. aureus of 99.9 % and 99.6 %, respectively, and biofilm inhibition against E. coli and S. aureus of 63.5 % and 68.9 %, respectively. Synergistic effects of antibacterial adhesion and contact killing of bacteria contributed to the significant antibacterial performance of the film. The biobased biodegradable film was highly effective in preventing microbial growth when applied as antibacterial food packaging for poultry product, extending the shelf life of fresh chicken breast up to eight days.

5.
ACS Macro Lett ; 13(9): 1112-1118, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39133642

ABSTRACT

A robust and fully biobased covalent adaptable network (CAN) that allows recyclability, biocompatibility, and controlled biodegradability is reported. The CAN was fabricated through a simple photo-cross-linking method, wherein low-molecular-weight poly(lactic acid) (∼3 kDa) was modified with end 1,2-dithiolane rings through a one-step Steglich esterification reaction with thioctic acid (TA). These incorporated 1,2-dithiolane rings undergo photoinduced ring-opening polymerization, thus enabling the cross-linking of poly(lactic acid) with abundant dynamic disulfide bonds. The resultant CAN demonstrates excellent transparency, effective UV-blocking capabilities below 320 nm, robust tensile strength (∼39 MPa), and superior dimensional stability at 80 °C, alongside attractive biocompatibility. Moreover, owing to the dynamic exchange and redox-responsiveness of disulfide bonds, the material can be recycled by hot-pressing and a reduction-oxidation process while also being capable of controllably biodegrading at the end of its lifecycle. Furthermore, it exhibits reconfigurable shape memory properties with fast recovery. This study elucidates a straightforward approach to fabricating multifunctional and sustainable polymer materials with potential applications in diverse fields such as packaging, coating, and biomedicine.

6.
Food Chem ; 460(Pt 2): 140636, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39094344

ABSTRACT

Tilapia is suitable for industrial roasting production because of its good flavor and processing adaptability. In this study, the key physicochemical properties and volatile compounds for sensory formation of roasted tilapia were identified after roasting condition optimization. The highest sensory score was obtained at 215 °C, 45 min, and 4% oil. During roasting, the a*, b*, hardness, chewiness, and oxidation of proteins and lipids significantly increased, the moisture content decreased, and the myofibrillar protein aggregation was observed by scanning electron microscope. After identification and quantification by headspace-gas chromatography-ion mobility spectrometry, 10 compounds with odor active value ≥1 were selected as characteristic flavor compounds. The correlation network indicated that the sensory formation mainly resulted from Maillard reaction, myofibrillar protein aggregation, and improvement of pleasant volatile flavor compounds induced by oxidation of proteins and lipids and water loss. This study provides an important theoretical basis and technical support for roasted tilapia production.


Subject(s)
Cooking , Taste , Tilapia , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry , Humans , Hot Temperature , Odorants/analysis , Maillard Reaction
7.
Nanomaterials (Basel) ; 14(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39120383

ABSTRACT

Since solid electrolytes have a broad electrochemical stability window, are exceptionally electrochemically stable against Li metal, and function as a physical separator to prevent dendrite growth, they are at the forefront of alternate possibilities, further increasing the stability and energy density of Li-ion batteries. NASICON-type electrolytes are a promising candidate due to their negligible moisture sensitivity, which results in outstanding stability and a lower probability of Li2CO3 passivity under the ambient atmosphere. However, one of the most promising representatives, Li1+xYxZr2-x(PO4)3 (LYZP), has multiple stable phases with significant variation in their corresponding Li-ion conductivity. In this paper, we have successfully synthesized the highly ionically conductive rhombohedral phase of LYZP via spray-flame synthesis. Two different solvent mixtures (e.g., 2-ethyl hexanoic acid/ethanol, propanol/propanoic acid) were chosen to explore the effect of precursor composition and combustion enthalpy on the phase composition of the nanoparticle. The as-synthesized nanoparticles from spray-flame synthesis consisted of the crystalline tetragonal zirconia (t-ZrO2) phase, while lithium, yttrium, and phosphate were present on the nanoparticles' surface as amorphous phases. However, a short annealing step (1 h) was sufficient to obtain the NASICON phase. Moreover, we have shown the gradual phase conversion from orthorhombic ß phase to rhombohedral α phase as the annealing temperature increased from 700 °C to 1300 °C (complete removal of ß phase). In this context, Y3+ doping was also crucial, along with the appropriate solvent mixture and annealing temperature, for obtaining the much-desired rhombohedral α phase. Further, 0.2 at% Y3+ doping was added to the solvent mixture of 2-ethyl hexanoic acid/ethanol, and annealing at 1300 °C for 1 h resulted in a high ionic conductivity of 1.14∙10-5 S cm-1.

8.
Nat Commun ; 15(1): 6711, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112487

ABSTRACT

The investigation of triggers causing the onset and intensification of Northern Hemisphere Glaciation (NHG) during the late Pliocene is essential for understanding the global climate system, with important implications for projecting future climate changes. Despite their critical roles in the global climate system, influences of land-ocean interactions on high-latitude ice sheets remain largely unexplored. Here, we present a high-resolution Asian dust record from Ocean Drilling Program Site 1208 in the North Pacific, which lies along the main route of the westerlies. Our data indicate that atmosphere-land-ocean interactions affected aeolian dust emissions through modulating moisture and vegetation in dust source regions, highlighting a critical role of terrestrial systems in initiating the NHG as early as 3.6 Myr ago. Combined with additional multi-proxy and model results, we further show that westerly wind strength was enhanced, mainly at low-to-middle tropospheric levels, during major glacial events at about 3.3 and 2.7 Myr ago. We suggest that coupled responses of Earth's surface dynamics and atmospheric circulation in the Plio-Pleistocene likely involved feedbacks related to changes in paleogeography, ocean circulation, and global climate.

9.
Int J Biol Macromol ; 276(Pt 1): 133918, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019365

ABSTRACT

Lung cancer is the deadliest and most aggressive malignancy in the world. Preventing cancer is crucial. Therefore, the new molecular targets have laid the foundation for molecular diagnosis and targeted therapy of lung cancer. PLA2G1B plays a key role in lipid metabolism and inflammation. PLA2G1B has selective substrate specificity. In this paper, the recombinant protein molecular structure of PLA2G1B was studied and novel therapeutic interventions were designed to disrupt PLA2G1B activity and impede tumor growth by targeting specific regions or residues in its structure. Construct protein-protein interaction networks and core genes using R's "STRING" program. LASSO, SVM-RFE and RF algorithms identified important genes associated with lung cancer. 282 deg were identified. Enrichment analysis showed that these genes were mainly related to adhesion and neuroactive ligand-receptor interaction pathways. PLA2G1B was subsequently identified as developing a preventative feature. GSEA showed that PLA2G1B is closely related to α-linolenic acid metabolism. Through the analysis of LASSO, SVM-RFE and RF algorithms, we found that PLA2G1B gene may be a preventive gene for lung cancer.


Subject(s)
Computational Biology , Lung Neoplasms , Machine Learning , Recombinant Proteins , Humans , Computational Biology/methods , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Interaction Maps/genetics , Disease Progression , Algorithms
10.
NPJ Biofilms Microbiomes ; 10(1): 59, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034349

ABSTRACT

The dominant bacteria in the hindgut of calves play an important role in their growth and health, which could even lead to lifelong consequences. However, the identification of core probiotics in the hindgut and its mechanism regulating host growth remain unclear. Here, a total of 1045 fecal samples were analyzed by 16S rRNA gene sequencing from the 408 Holstein dairy calves at the age of 0, 14, 28, 42, 56, and 70 days to characterize the dynamic changes of core taxa. Moreover, the mechanisms of nutrient metabolism of calf growth regulated by core bacteria were investigated using multi-omics analyses. Finally, fecal microbiota transplantation (FMT) in mice were conducted to illustrate the potential beneficial effects of core bacteria. Four calf enterotypes were identified and enterotypes dominated by Bifidobacterium and Oscillospiraceae_UCG-005 were representative. The frequency of enterotype conversion shifted from variable to stable. The close relationship observed between phenotype and enterotype, revealing a potential pro-growth effect of Bifidobacterium, might be implemented by promoting the use of carbohydrate, activating the synthesis of volatile fatty acids, amino acids and vitamin B6, and inhibiting methane production in the hindgut. The FMT results indicated the beneficial effect of Bifidobacterium on host growth and hindgut development. These results support the notion that the Bifidobacterium-dominated fecal microbiome would be an important driving force for promoting the host growth in the early life. Our findings provide new insights into the potential probiotic mining and application strategies to promote the growth of young animals or improve their growth retardation.


Subject(s)
Bifidobacterium , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Feces/microbiology , Cattle , RNA, Ribosomal, 16S/genetics , Bifidobacterium/genetics , Bifidobacterium/growth & development , Mice , Fecal Microbiota Transplantation/methods , Phenotype , Probiotics/administration & dosage , Phylogeny , DNA, Bacterial/genetics
11.
Sci Total Environ ; 947: 174628, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992371

ABSTRACT

The Tibetan Plateau, a typical high-altitude area, is less affected by human activities such as industrial development, and the external pollution to water sources is extremely low. Then it is also an important source of water samples for exploring the molecular characteristics of precursors in the dissolved organic matter (DOM) of disinfection byproducts (DBPs) in drinking water. Research data on DBPs in drinking water on the Tibet Plateau remains insufficient, leading to uncertainty about DBP contamination in the area. This study explores the formation potential of 35 typical DBPs, including 6 trihalomethanes (THMs), 9 haloacetic acids (HAAs), 2 halogenated ketones (HKs), 9 nitrosamines (NAs), and 9 aromatic DBPs, during chlorination and chloramination of typical source water samples in the Tibet Plateau of China. Moreover, in order to further investigate the characteristics of the generation of DBPs, the molecular composition of DOM in the collected water samples was characterized by Fourier transform ion cyclotron resonance mass spectrometry. The findings reveal that, for chlorination and chloramination, the average concentration of the five classes of DBPs was ranked as follows (chlorination, chloramination): HAAs (268.1 µg/L, 54.2 µg/L) > THMs (44.0 µg/L, 2.0 µg/L) > HKs (0.7 µg/L, 1.8 µg/L) > NAs (26.5 ng/L, 74.6 ng/L) > Aromatics (20.4 ng/L, 19.5 ng/L). The dominant compounds in THMs, HAAs, and NAs are trichloromethane, dichloroacetic acid, trichloroacetic acid, and nitrosopyrrolidine, respectively. This study highlights a significant positive correlation between DBP generation and UV254, SUV254, and the double bond equivalents of DOM in the source water. It systematically elucidates DOM molecular composition characteristics and DBP formation potential in high-altitude water sources, shedding light on key factors influencing DBP generation at the molecular level in high-altitude areas.

12.
Sci Robot ; 9(92): eadl0307, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018371

ABSTRACT

Biological organisms often have remarkable multifunctionality through intricate structures, such as concurrent shape morphing and stiffness variation in the octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome, and the control system is complex, often involving multiple control loops to finish a required task. Here, inspired by the scales that cover creatures like pangolins and fish, we developed a robotic structure that can vary its stiffness and change shape simultaneously in a highly integrated, compact body. The scale-inspired layered structure (SAILS) was enabled by the inversely designed programmable surface patterns of the scales. After fabrication, SAILS was inherently soft and flexible. When sealed in an elastic envelope and subjected to negative confining pressure, it transitioned to its designated shape and concurrently became stiff. SAILS could be actuated at frequencies as high as 5 hertz and achieved an apparent bending modulus change of up to 53 times between its soft and stiff states. We further demonstrated both the versatility of SAILS by developing a soft robot that is amphibious and adaptive and tunable landing systems for drones with the capacity to accommodate different loads.

13.
PLoS One ; 19(7): e0305101, 2024.
Article in English | MEDLINE | ID: mdl-39052600

ABSTRACT

OBJECTIVE: To explore the effectiveness of family participatory clown therapy in venipuncture in hospitalized children. METHODS: We recruited 104 children aged 3 to 6 years for a non-randomized controlled trial from March to December 2022. All participants required peripheral venepuncture infusions for treatment. The children were assigned to either the control group (n = 52) or the experimental group (n = 52).Standard care was utilized in the control group. In the experimental group, two clown nurses and a parent provided family participatory clown therapy for 35-45 minutes per child before, during, and after venipuncture. We assessed children's pain (FLACC and W-B FPS), anxiety (VAS-A), medical fear (CFS), crying incidence, compliance, parental anxiety (S-AI), and parental satisfaction. RESULTS: At venipuncture, the FLACC score was lower in the experimental group (4.46±2.053) compared to the control group (5.96±2.441), the W-B FPS score was also lower in the experimental group (4.96±2.392) than in the control group (6.35±2.266), with a statistically significant difference (P<0.05).The children in the experimental group had lower levels of anxiety, medical fear, crying, and parental anxiety than the control group. In addition, child compliance and parent satisfaction were higher in the experimental group than in the control group, with statistically significant differences (P<0.05). CONCLUSION: Family participatory clown therapy can reduce pain, anxiety, medical fear, and crying during venipuncture in children. It can also improve venipuncture compliance, reduce parental anxiety, and increase parental satisfaction.


Subject(s)
Anxiety , Child, Hospitalized , Laughter Therapy , Phlebotomy , Humans , Phlebotomy/psychology , Male , Female , Child , Child, Preschool , Child, Hospitalized/psychology , Anxiety/psychology , Anxiety/therapy , Laughter Therapy/methods , Parents/psychology , Crying/psychology , Fear/psychology , Pain/psychology
14.
Antioxidants (Basel) ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929089

ABSTRACT

Oxidative stress damage in periparturient cows decreases both production and their health; supplementation with complex additives during the periparturient period has been used as an important strategy to enhance the antioxidant status and production of dairy cows. The periparturient cows not only risk a negative energy balance due to reduced dry matter intake but also represent a sensitive period for oxidative stress. Therefore, we have developed an immunomodulatory and nutritional regulation combined additive (INC) that hopefully can improve the immune status and production of cows during the periparturient period and their offspring health and growth by improving their antioxidant stress status. The INC comprised a diverse array of additives, including water-soluble and fat-soluble vitamins, Selenomethionine, and active dry Saccharomyces cerevisiae. Forty-five multiparous Holstein cows were randomly assigned to three treatments: CON (no INC supplementation, n = 15), INC30 (30 g/d INC supplementation, n = 15), and INC60 (60 g/d INC supplementation, n = 15) based on last lactation milk yield, body condition score, and parity. Newborn calves were administered 4 L of maternal colostrum originating from the corresponding treatment and categorized based on the treatment received by their respective dams. The INC not only served to maintain the antioxidative stress system of dairy cows during the periparturient period but also showed a tendency to improve the immune response (lower tumor necrosis factor and interleukin-6) during the perinatal period. A linear decrease in concentrations of alkaline phosphatase postpartum and ß-hydroxybutyrate was observed with INC supplementation. Milk fat yield, milk protein yield, and energy-corrected milk yield were also increased linearly with increasing additive supplementation. Calves in the INC30 group exhibited greater wither height and chest girth but no significant effect on average daily gain or body weight. The diarrhea frequency was linearly decreased with the incremental level of INC. Results indicate that supplementation with INC in peripartum dairy cows could be a major strategy to improve immune response, decrease inflammation, maintain antioxidant stress status in transition dairy cows, and have merit in their calves. In conclusion, this study underlines the benefits of INC supplementation during the transition period, as it improved anti-inflammatory capacity, could positively impact antioxidative stress capacity, and eventually enhanced the production performance of dairy cows and the health and growth of calves.

15.
Adv Mater ; 36(32): e2404502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822632

ABSTRACT

Assistive interfaces enable collaborative interactions between humans and robots. In contrast to traditional rigid devices, conformable fabrics with tunable mechanical properties have emerged as compelling alternatives. However, existing assistive fabrics actuated by fluidic or thermal stimuli struggle to adapt to complex body contours and are hindered by challenges such as large volumes after actuation and slow response rates. To overcome these limitations, inspiration is drawn from biological protective organisms combining hard and soft phases, and active assistive fabrics consisting of architectured rigid tiles interconnected with flexible actuated fibers are proposed. Through programmable tessellation of target body shapes into architectured tiles and controlling their interactions by the actuated fibers, the active fabrics can rapidly transition between soft compliant configurations and rigid states conformable to the body (>350 times stiffness change) while minimizing the device volume after actuation. The versatility of these active fabrics is demonstrated as exosuits for tremor suppression and lifting assistance, as body armors for impact mitigation, and integration with electrothermal actuators for smart actuation with convenient folding capabilities. This work offers a practical framework for designing customizable active fabrics with shape adaptivity and controllable stiffness, suitable for applications in wearable exosuits, haptic devices, and medical rehabilitation systems.


Subject(s)
Robotics , Textiles , Robotics/instrumentation , Humans , Wearable Electronic Devices , Equipment Design , Mechanical Phenomena
16.
Small ; : e2402527, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888122

ABSTRACT

Aqueous zinc-iodine batteries are promising candidates for large-scale energy storage due to their high energy density and low cost. However, their development is hindered by several drawbacks, including zinc dendrites, anode corrosion, and the shuttle of polyiodides. Here, the design of 2D-shaped tungsten boride nanosheets with abundant borophene subunits-based active sites is reported to guide the (002) plane-dominated deposition of zinc while suppressing side reactions, which facilitates interfacial nucleation and uniform growth of zinc. Meanwhile, the interfacial d-band orbits of tungsten sites can further enhance the anchoring of polyiodides on the surface, to promote the electrocatalytic redox conversion of iodine. The resulting tungsten boride-based I2 cathodes in zinc-iodine cells exhibit impressive cyclic stability after 5000 cycles at 50 C, which accelerates the practical applications of zinc-iodine batteries.

17.
Anim Nutr ; 17: 428-437, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860024

ABSTRACT

This experiment aimed to evaluate the impact of dietary hydroxyproline (Hyp) supplementation on the muscle quality of juvenile Pacific white shrimp (Litopenaeus vannamei) fed a low fishmeal diet. Six formulated diets included one high fishmeal (HF; 25% fishmeal content) and five low fishmeal diets (10% fishmeal content) with 0%, 0.2%, 0.4%, 0.6% and 0.8% Hyp (LF0, LF2, LF4, LF6 and LF8, respectively). Each diet was assigned to four replicates, and 40 shrimp (0.32 ± 0.00 g) per replicate were fed four times a day for 8 weeks. Dietary Hyp supplementation had little effects on growth performance, but increased the contents of Hyp, prolyl 4-hydroxylases (P4Hs), and collagen. The meat yield, springiness, hardness, chewiness, and cohesiveness of muscle were the highest in the LF4 group among the low fishmeal groups (P < 0.05). Cooking loss and freezing loss of muscle were the lowest in the LF4 group (P < 0.05). Dietary supplementation with 0.4% Hyp increased the myofiber density and decreased the myofiber diameter of muscle (P < 0.05). Supplementation of Hyp in the diet up-regulated the mRNA expression of smyhc5, smyhc15, col1a1, col1a2, igf-1f, tgf-ß and tor and down-regulated the mRNA expression of smyhc 1, smyhc 2, smyhc 6a (P < 0.05). Supplementation of Hyp in the diet up-regulated the protein expression of P-4E-BP1, P-AKT, AKT and P-AKT/AKT (P < 0.05). These results suggested that the addition of 0.4% Hyp to low fishmeal diets improved the muscle quality of L. vannamei.

18.
Arthritis Rheumatol ; 76(9): 1377-1386, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38751101

ABSTRACT

OBJECTIVE: Accurately predicting knee osteoarthritis (KOA) is essential for early detection and personalized treatment. We aimed to develop and test a magnetic resonance imaging (MRI)-based joint space (JS) radiomic model (RM) to predict radiographic KOA incidence through neural networks by integrating meniscus and femorotibial cartilage radiomic features. METHODS: In the Osteoarthritis Initiative cohort, participants with knees without radiographic KOA at baseline but at high risk for radiographic KOA were included. Patients' knees developed radiographic KOA, whereas control knees did not over four years. We randomly split the participants into development and test cohorts (8:2) and extracted features from baseline three-dimensional double-echo steady-state sequence MRI. Model performance was evaluated using an area under the receiver operating characteristic curve (AUC), sensitivity, and specificity in both cohorts. Nine resident surgeons performed the reader experiment without/with the JS-RM aid. RESULTS: Our study included 549 knees in the development cohort (275 knees of patients with KOA vs 274 knees of controls) and 137 knees in the test cohort (68 knees of patients with KOA vs 69 knees of controls). In the test cohort, JS-RM had a favorable accuracy for predicting the radiographic KOA incidence with an AUC of 0.931 (95% confidence interval [CI] 0.876-0.963), a sensitivity of 84.4% (95% CI 83.9%-84.9%), and a specificity of 85.6% (95% CI 85.2%-86.0%). The mean specificity and sensitivity of resident surgeons through MRI reading in predicting radiographic KOA incidence were increased from 0.474 (95% CI 0.333-0.614) and 0.586 (95% CI 0.429-0.743) without the assistance of JS-RM to 0.874 (95% CI 0.847-0.901) and 0.812 (95% CI 0.742-0.881) with JS-RM assistance, respectively (P < 0.001). CONCLUSION: JS-RM integrating the features of the meniscus and cartilage showed improved predictive values in radiographic KOA incidence.


Subject(s)
Magnetic Resonance Imaging , Neural Networks, Computer , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/epidemiology , Female , Male , Middle Aged , Incidence , Aged , Cartilage, Articular/diagnostic imaging , Radiography , Knee Joint/diagnostic imaging , Sensitivity and Specificity , ROC Curve , Radiomics
19.
Nat Commun ; 15(1): 3966, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729935

ABSTRACT

Rhenium (Re) and uranium (U) are essential proxies in reconstructing past oceanic oxygenation evolution. However, their removal in continental shelf sediments, hotspots of early diagenesis, were previously treated as quantitatively unimportant sinks in the ocean. Here we examine the sedimentary reductive removal of Re and U and their coupling with organic carbon decomposition, utilizing the 224Ra/228Th disequilibria within the East China Sea shelf. We identified positive correlations between their removal fluxes and the rates of sediment oxygen consumption or organic carbon decomposition. These correlations enable an evaluation of global shelf reductive sinks that are comparable to (for Re) or higher than (~4-fold for U) previously established suboxic/anoxic sinks. These findings suggest potential imbalances in the modern budgets of Re and U, or perhaps a substantial underestimation of their sources. Our study thus highlights shelf sedimentary reductive removal as critical yet overlooked sinks for Re and U in the modern ocean.

20.
Talanta ; 276: 126251, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38761657

ABSTRACT

Monitoring of glutathione has attracted considerable attention owing to its biological and clinical significance. An eco-friendly, economic, simple, biocompatible probe with excellent sensitivity and selectivity is very important. Herein, FeOOH QD@ATP-BODIPY nanocomposite was fabricated from one-step synthesized FeOOH quantum dots (FeOOH QD) and commercial boron-dipyrromethene-conjugated adenosine 5'-triphosphate (ATP-BODIPY) for glutathione (GSH) sensing in solutions and living cells. Three fascinate merits of FeOOH QD were confirmed: (a) as fluorescence quencher for ATP-BODIPY, (b) as selective recognizer of GSH and (c) with carrier effects and membrane permeability. The construction and response mechanism of the nanocomposite was based on the competitive coordination chemistry and redox reaction of FeOOH QD between GSH and phosphate group of ATP-BODIPY. Under the optimal conditions, the detection limit for GSH was as low as 68.8 nM. Excellent linear range of 0.2-400 µM was obtained. Furthermore, the chemical response of the nanocomposite exhibits high selectivity toward GSH over other electrolytes and biomolecules. It was successfully applied for GSH determination in human serum samples. The MTT assay exhibited FeOOH QD@ATP-BODIPY nanocomposite own good biocompatibility. FeOOH QD@ATP-BODIPY respond to GSH in living cells in situ was also proved via fluorescence imaging. These suggested that the FeOOH QD@ATP-BODIPY nanocomposite had potential application in biological and clinical applications.


Subject(s)
Adenosine Triphosphate , Boron Compounds , Glutathione , Nanocomposites , Quantum Dots , Boron Compounds/chemistry , Glutathione/analysis , Glutathione/chemistry , Humans , Adenosine Triphosphate/analysis , Adenosine Triphosphate/blood , Adenosine Triphosphate/chemistry , Nanocomposites/chemistry , Quantum Dots/chemistry , Biocompatible Materials/chemistry , HeLa Cells , Fluorescent Dyes/chemistry , Limit of Detection , Ferric Compounds/chemistry , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL