Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Adv Sci (Weinh) ; : e2401899, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099330

ABSTRACT

Fusarium head blight (FHB) is one of the most destructive wheat diseases worldwide. To understand the impact of human migration and changes in agricultural practices on crop pathogens, here population genomic analysis with 245 representative strains from a collection of 4,427 field isolates of Fusarium asiaticum, the causal agent of FHB in Southern China is conducted. Three populations with distinct evolution trajectories are identifies over the last 10,000 years that can be correlated with historically documented changes in agricultural practices due to human migration caused by the Southern Expeditions during the Jin Dynasty. The gradual decrease of 3ADON-producing isolates from north to south along with the population structure and spore dispersal patterns shows the long-distance (>250 km) dispersal of F. asiaticum. These insights into population dynamics and evolutionary history of FHB pathogens are corroborated by a genome-wide analysis with strains originating from Japan, South America, and the USA, confirming the adaptation of FHB pathogens to cropping systems and human migration.

2.
Front Microbiol ; 15: 1343946, 2024.
Article in English | MEDLINE | ID: mdl-39161602

ABSTRACT

Common bunt caused by Tilletia laevis Kühn is one of the most serious fungal diseases of wheat. The root-microbial associations play key roles in protecting plants against biotic and abiotic factors. Managing these associations offers a platform for improving the sustainability and efficiency of agriculture production. Here, by using high throughput sequencing, we aimed to identify the bacterial and fungal associations in wheat, alfalfa, and oat crops cultivated in different years in the Gansu province of China. Soil samples (0-6 cm below the surface) from infected wheat by T. laevis had significantly more bacterial and fungal richness than control samples as per the Chao1 analysis. We found some dominant fungi and bacterial phyla in infected wheat by T. laevis, such as Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Ascomycota, Basidiomycota, and Mortierello mycota. We also analyzed the chemical and enzymatic properties of soil samples after T. laevis inoculation. The total nitrogen, total kalium (TK), ammonium nitrogen, available kalium, organic carbon, invertase, phosphatase, and catalase were more in T. laevis-infected samples as compared to the control samples, while pH, total phosphorus, nitrate nitrogen, available phosphorus, and urease were more in control samples compared to T. laevis-infected samples. The results of this study will contribute to the control of wheat common bunt by candidate antagonistic microorganisms and adverse properties of soil.

3.
Plant Dis ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39182161

ABSTRACT

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a continuous threat to global wheat production. In 2021, the epidemic of wheat stripe rust in China affected approximately 4.5 million hectares, resulting in severe yield losses. When confronted with the epidemic, tracing the sources of the pathogen can offer valuable insights for disease prevention and control. This study was conducted to analyze the genetic structure, aerodynamics, geographical features, and cultivation practices of the pathogen population in various wheat-producing regions, and to further reveal the spread patterns of the stripe rust pathogens in China. The findings indicated an overall trend of the pathogen dissemination from the west to the east. The pathogen was primarily spread from the northwestern region to the Huang-Huai-Hai region through the Guanzhong Plain and the NanXiang Plain. Meanwhile, the pathogen was also spread eastward from the southwestern region to the lower reaches of the Yangtze River, utilizing the Jianghan Plain as a bridge and the Yangtze River Valley in southwestern Anhui as the main pathway. Furthermore, the pathogen spread northward into Shandong under the driving force of the southeast winds. The findings of this study may provide valuable insights for the integrated management of wheat stripe rust in China.

4.
Plants (Basel) ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38891331

ABSTRACT

Tilletia controversa J. G. Kühn is the causal agent of wheat dwarf bunt (DB), a destructive disease causing tremendous economic losses. Small cysteine-rich secreted proteins (SCPs) of plant fungi are crucial in modulating host immunity and promoting infection. Little is known about the virulence effectors of T. controversa. Here, we characterized TcSCP_9014, a novel effector of SCPs, in T. controversa which suppressed programmed cell death triggered by BAX without relying on its signal peptide (SP). The SP in the N-terminus of TcSCP_9014 was functional in the secretory process. Live-cell imaging in the epidermal cells of Nicothiana benthamiana suggested that TcSCP_9014 localized to the plasma membrane, cytoplasm, and nucleus. Furthermore, yeast cDNA library screening was performed to obtain the interacting proteins in wheat. Yeast two-hybrid and BiFC assays were applied to validate the interaction of TcSCP_9014 with TaMTAN and TaGAPDH. Our work revealed that the novel effector TcSCP_9014 is vital in modulating plant immunity, which opens up new avenues for plant-pathogen interactions in the T. controversa infection process.

5.
Plant Dis ; 108(2): 256-263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38289334

ABSTRACT

The challenge of wheat leaf rust on wheat production is a recurring issue. Race identification of Puccinia triticina (Pt) serves as the foundation for preventing and controlling this disease. In a 15-year study, we identified 2,900 isolates of Pt from 20 provinces, cities, or autonomous regions in China during 2007 to 2021 and found 332 virulence phenotypes with 11 predominant phenotypes: PHT (8.3%), THT (5.4%), PHK (4.5%), PHJ (3.7%), THJ (3.6%), SHJ (3.5%), THS (3.3%), FGD (2.9%), THK (2.6%), PHS (2.4%), and PHD (2.0%). The virulence frequency for 40 Lr genes was identified across different years and areas; one major reason for the race dynamics was the attenuation to Lr1 and Lr26, which was more evident in southwest China. Lr9, Lr24, Lr28, Lr38, and Lr42 maintained effectiveness in China, while Lr2c, Lr10, Lr12, Lr14a, Lr14b, Lr22a, Lr33, and Lr36 nearly lost their effectiveness against wheat leaf rust disease. No significant difference was found among predominant phenotypes in different areas (P > 0.1). However, 12 Lr sites were found to have differences in virulence frequencies with values greater than 20% across various locations; furthermore, the lowest and highest virulence values were observed in north China (Area 1) and northwest China (Area 5), respectively. According to phenotype dynamics, PHT, THT, FGD, THK, and PHS are more likely to persist over time. In addition, much attention should be given toward discovering rising combinations of virulent phenotypes.


Subject(s)
Basidiomycota , Puccinia , Basidiomycota/genetics , Virulence/genetics , Plant Diseases/genetics , China
6.
Front Plant Sci ; 14: 1132699, 2023.
Article in English | MEDLINE | ID: mdl-37235011

ABSTRACT

Wheat (Triticum aestivum L.) diseases are major factors responsible for substantial yield losses worldwide, which affect global food security. For a long time, plant breeders have been struggling to improve wheat resistance against major diseases by selection and conventional breeding techniques. Therefore, this review was conducted to shed light on various gaps in the available literature and to reveal the most promising criteria for disease resistance in wheat. However, novel techniques for molecular breeding in the past few decades have been very fruitful for developing broad-spectrum disease resistance and other important traits in wheat. Many types of molecular markers such as SCAR, RAPD, SSR, SSLP, RFLP, SNP, and DArT, etc., have been reported for resistance against wheat pathogens. This article summarizes various insightful molecular markers involved in wheat improvement for resistance to major diseases through diverse breeding programs. Moreover, this review highlights the applications of marker assisted selection (MAS), quantitative trait loci (QTL), genome wide association studies (GWAS) and the CRISPR/Cas-9 system for developing disease resistance against most important wheat diseases. We also reviewed all reported mapped QTLs for bunts, rusts, smuts, and nematode diseases of wheat. Furthermore, we have also proposed how the CRISPR/Cas-9 system and GWAS can assist breeders in the future for the genetic improvement of wheat. If these molecular approaches are used successfully in the future, they can be a significant step toward expanding food production in wheat crops.

7.
Microbiol Spectr ; 11(1): e0039022, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36625645

ABSTRACT

Wheat dwarf bunt leads to the replacement of seeds with fungal galls containing millions of teliospores of the pathogen Tilletia controversa Kühn. As one of the most devastating internationally quarantined wheat diseases, wheat dwarf bunt spreads to cause distant outbreaks by seeds containing teliospores. In this study, based on a combination of amplicon sequencing and isolation approaches, we analyzed the seed microbiome signatures of endophytes between resistant and susceptible cultivars after infection with T. controversa. Among 310 bacterial species obtained only by amplicon sequencing and 51 species obtained only by isolation, we found 14 overlapping species by both methods; we detected 128 fungal species only by amplicon sequencing, 56 only by isolation, and 5 species by both methods. The results indicated that resistant uninfected cultivars hosted endophytic communities that were much more stable and beneficial to plant health than those in susceptible infected cultivars. The susceptible group showed higher diversity than the resistant group, the infected group showed more diversity than the uninfected group, and the microbial communities in seeds were related to infection or resistance to the pathogen. Some antagonistic microbes significantly suppressed the germination rate of the pathogen's teliospores, providing clues for future studies aimed at developing strategies against wheat dwarf bunt. Collectively, this research advances the understanding of the microbial assembly of wheat seeds upon exposure to fungal pathogen (T. controversa) infection. IMPORTANCE This is the first study on the microbiome signature of endophytes in wheat seed response to wheat dwarf bunt caused by Tilletia controversa Kühn. Some antagonistic microbes suppressed the germination of teliospores of the pathogen significantly, which will provide clues for future studies against wheat dwarf bunt. Collectively, this research first advances the understanding of the microbial assembly of wheat seed upon exposure to the fungal pathogen (T. controversa) infection.


Subject(s)
Basidiomycota , Triticum , Triticum/microbiology , Endophytes/genetics , Basidiomycota/genetics , Seeds , Plant Diseases/microbiology
8.
Plant Dis ; 107(6): 1690-1696, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36471466

ABSTRACT

Carbendazim resistance was detected using 4,701 Fusarium graminearum species complex isolates collected from major wheat-producing regions in China from 2018 to 2020. A total of 348 carbendazim-resistant isolates were identified. The majority of carbendazim-resistant isolates were detected in Jiangsu and Anhui Provinces. In total, 227 and 88 isolates were obtained from each of the Jiangsu and Anhui Provinces, with a high resistance frequency of 41.12 and 20.56%, respectively. The predominant resistant isolates harboring point mutations were F167Y (79.31%), followed by E198Q (16.38%) and F200Y (4.31%). Compared with F. graminearum, F. asiaticum isolates were more likely to produce carbendazim resistance. In this study, we first detected carbendazim-resistant isolates in Hebei, Shaanxi, Sichuan, and Hunan Provinces. In Jiangsu, Anhui, and Zhejiang, the frequency of carbendazim-resistant isolates maintained a high level, resulting in stable carbendazim-resistant populations. We also found the dynamic of carbendazim-resistance frequency in most provinces showed similar trends to the epidemic of Fusarium Head Blight (FHB). Our results facilitate the understanding of the current situation of carbendazim resistance of FHB pathogens and will be helpful for fungicides selection in different wheat-producing areas in China.


Subject(s)
Carbamates , Fungicides, Industrial , Fusarium , Benzimidazoles/pharmacology , Carbamates/pharmacology , Fusarium/genetics , Point Mutation , Triticum
9.
Front Plant Sci ; 13: 1031611, 2022.
Article in English | MEDLINE | ID: mdl-36507438

ABSTRACT

This is the first study reporting droplet digital PCR and quantitative real time PCR for detection of Tilletia caries (syn. T. tritici), which causes common bunt of wheat and leads to yield losses of 80% in many wheat growing areas worldwide. To establish an accurate, rapid and quantifiable detection method, we tested 100 inter simple sequence repeats (ISSR) primers and obtained a species-specific fragment (515 bp) generated by ISSR 827. Then, a specific 266 bp band for the sequence characterized amplified region (SCAR) marker was produced from T. caries. The detection limit reached 50 pg/µL. Based on the SCAR marker, we further developed a higher sensitivity of quantitative real time-polymerase chain reaction (qRT-PCR) with a detection limit of 2.4 fg/µL, and droplet digital PCR (ddPCR) with a detection limit of 0.24 fg/µL. Both methods greatly improved the detection sensitivity of T. caries, which will be contribute a lot for quickly and accurately detection of T. caries, which causes wheat common bunt.

10.
Front Plant Sci ; 13: 993519, 2022.
Article in English | MEDLINE | ID: mdl-36340362

ABSTRACT

Seed-borne pathogens cause diverse diseases at the growth, pre- and post-harvest stage of soybean resulting in a large reduction in yield and quality. The physiological and metabolic aspects of seeds are closely related to their defense against pathogens. Recently, Fusarium fujikuroi has been identified as the dominant seed-borne fungi of soybean seed decay, but little information on the responses of soybean seeds induced by F. fujikuroi is available. In this study, a time-course symptom development of seed decay was observed after F. fujikuroi inoculation through spore suspension soaking. The germination rate and the contents of soluble sugar and soluble protein were significantly altered over time. Both chitinase and ß-1,3-glucanase as important fungal cell wall-degrading enzymes of soybean seeds were also rapidly and transiently activated upon the early infection of F. fujikuroi. Metabolic profile analysis showed that the metabolites in glycine, serine, and threonine metabolism and tryptophan metabolism were clearly induced by F. fujikuroi, but different metabolites were mostly enriched in isoflavone biosynthesis, flavone biosynthesis, and galactose pathways. Interestingly, glycitein and glycitin were dramatically upregulated while daidzein, genistein, genistin, and daidzin were largely downregulated. These results indicate a combination of physiological responses, cell wall-related defense, and the complicated metabolites of soybean seeds contributes to soybean seed resistance against F. fujikuroi, which are useful for soybean resistance breeding.

11.
Front Microbiol ; 13: 1009689, 2022.
Article in English | MEDLINE | ID: mdl-36386647

ABSTRACT

Rhizosphere microbes play a vital role in plant health and defense against soil-borne diseases. Previous studies showed that maize-soybean relay strip intercropping altered the diversity and composition of pathogenic Fusarium species and biocontrol fungal communities in the soybean rhizosphere, and significantly suppressed soybean root rot. However, whether the rhizosphere bacterial community participates in the regulation of this intercropping on soybean root rot is not clear. In this study, the rhizosphere soil of soybean healthy plants was collected in the continuous cropping of maize-soybean relay strip intercropping and soybean monoculture in the fields, and the integrated methods of microbial profiling, dual culture assays in vitro, and pot experiments were employed to systematically investigate the diversity, composition, and function of rhizosphere bacteria related to soybean root rot in two cropping patterns. We found that intercropping reshaped the rhizosphere bacterial community and increased microbial community diversity, and meanwhile, it also recruited much richer and more diverse species of Pseudomonas sp., Bacillus sp., Streptomyces sp., and Microbacterium sp. in soybean rhizosphere when compared with monoculture. From the intercropping, nine species of rhizosphere bacteria displayed good antagonism against the pathogen Fusarium oxysporum B3S1 of soybean root rot, and among them, IRHB3 (Pseudomonas chlororaphis), IRHB6 (Streptomyces), and IRHB9 (Bacillus) were the dominant bacteria and extraordinarily rich. In contrast, MRHB108 (Streptomyces virginiae) and MRHB205 (Bacillus subtilis) were the only antagonistic bacteria from monoculture, which were relatively poor in abundance. Interestingly, introducing IRHB3 into the cultured substrates not only significantly promoted the growth and development of soybean roots but also improved the survival rate of seedlings that suffered from F. oxysporum infection. Thus, this study proves that maize-soybean relay strip intercropping could help the host resist soil-borne Fusarium root rot by reshaping the rhizosphere bacterial community and driving more beneficial microorganisms to accumulate in the soybean rhizosphere.

12.
Microbiol Spectr ; 10(6): e0260822, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36250889

ABSTRACT

The folding and dynamics of three-dimensional (3D) genome organization are fundamental for eukaryotes executing genome functions but have been largely unexplored in nonmodel fungi. Using high-throughput sequencing coupled with chromosome conformation capture (Hi-C) data, we generated two chromosome-level assemblies for Puccinia striiformis f. sp. tritici, a fungus causing stripe rust disease on wheat, for studying 3D genome architectures of plant pathogenic fungi. The chromatin organization of the fungus followed a combination of the fractal globule model and the equilibrium globule model. Surprisingly, chromosome compartmentalization was not detected. Dynamics of 3D genome organization during two developmental stages of P. striiformis f. sp. tritici indicated that regulation of gene activities might be independent of the changes of genome organization. In addition, chromatin conformation conservation was found to be independent of genome sequence synteny conservation among different fungi. These results highlighted the distinct folding principles of fungal 3D genomes. Our findings should be an important step toward a holistic understanding of the principles and functions of genome architecture across different eukaryotic kingdoms. IMPORTANCE Previously, our understanding of 3D genome architecture has mainly come from model mammals, insects, and plants. However, the organization and regulatory functions of 3D genomes in fungi are largely unknown. In this study, we comprehensively investigated P. striiformis f. sp. tritici, a plant fungal pathogen, and revealed distinct features of the 3D genome, comparing it with the universal folding feature of 3D genomes in higher eukaryotic organisms. We further suggested that there might be distinct regulatory mechanisms of gene expression that are independent of chromatin organization changes during the developmental stages of this rust fungus. Moreover, we showed that the evolutionary pattern of 3D genomes in this fungus is also different from the cases in mammalian genomes. In addition, the genome assembly pipeline and the generated two chromosome-level genomes will be valuable resources. These results highlighted the unexplored distinct features of 3D genome organization in fungi. Therefore, our study provided complementary knowledge to holistically understand the organization and functions of 3D genomes across different eukaryotes.


Subject(s)
Basidiomycota , Genome, Fungal , Synteny , Plant Diseases/microbiology
13.
Metabolites ; 12(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36144210

ABSTRACT

Tilletia laevis causes common bunt disease in wheat, with severe losses of production yield and seed quality. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue level of the plants. Ultrahigh-performance liquid chromatography-Q-exactive mass spectrometry (UPLC-QE-MS) was used to examine the changes in wheat grains after T. laevis infection. PCA analysis suggested that T. laevis-infected and non-infected samples were scattered separately during the interaction. In total, 224 organic acids and their derivatives, 170 organoheterocyclic compounds, 128 lipids and lipid-like molecules, 85 organic nitrogen compounds, 64 benzenoids, 31 phenylpropanoids and polyketides, 21 nucleosides, nucleotides, their analogues, and 10 alkaloids and derivatives were altered in hyphal-infected grains. According to The Kyoto Encyclopedia of Genes and genomes analysis, the protein digestion and absorption, biosynthesis of amino acids, arginine and proline metabolism, vitamin digestion and absorption, and glycine, serine, and threonine metabolism pathways were activated in wheat crops after T. laevis infection.

14.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077025

ABSTRACT

Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.


Subject(s)
Basidiomycota , Plant Diseases , Basidiomycota/genetics , Chromosome Mapping , Fungi/genetics , Genomics , Plant Diseases/genetics , Plant Diseases/microbiology , Virulence/genetics
15.
Biology (Basel) ; 11(6)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35741386

ABSTRACT

Dwarf bunt and common bunt diseases of wheat are caused by Tilletia controversa Kühn and Tilletia foetida Kühn, respectively, and losses caused by these diseases can reach 70-80% in favourable conditions. T. controversa and T. foetida are fungal pathogens belonging to the Exobasidiomycetes within the basidiomycetous smut fungi (Ustilaginomycotina). In order to illuminate the proteomics differences of wheat spikes after the infection of T. controversa and T. foetida, the isobaric tags for relative and absolute quantification (iTRAQ) technique was used for better clarification. A total of 4553 proteins were differentially detected after T. controversa infection; 4100 were upregulated, and 453 were downregulated. After T. foetida infection, 804 differentially expressed proteins were detected; 447 were upregulated and 357 were downregulated. In-depth data analysis revealed that 44, 50 and 82 proteins after T. controversa and 9, 6 and 16 proteins after T. foetida were differentially expressed, which are antioxidant, plant-pathogen interaction and glutathione proteins, respectively, and 9 proteins showed results consistent with PRM. The top 20 KEGG enrichment pathways were identified after pathogen infection. On the basis of gene ontology, the upregulated proteins were linked with metabolic process, catalytic activity, transferase activity, photosynthetic membrane, extracellular region and oxidoreductase activity. The results expanded our understanding of the proteome in wheat spikes in response to T. controversa and T. foetida infection and provide a basis for further investigation for improving the defense mechanism of the wheat crops.

16.
Front Plant Sci ; 13: 916282, 2022.
Article in English | MEDLINE | ID: mdl-35712562

ABSTRACT

Exploiting wheat cultivars with stable resistance to Fusarium Head blight (FHB) and toxin accumulation is a cost-effective and environmentally friendly strategy to reduce the risk of yield losses and contamination with mycotoxins. To facilitate the deployment of stable cultivar resistance, we evaluated FHB resistance and resistance to mycotoxin accumulation in 410 wheat lines bred by local breeders from four major wheat growing regions in China after natural infection at three distinct locations (Hefei, Yangzhou and Nanping). Significant differences in disease index were observed among the three locations. The disease indexes (DI's) in Nanping were the highest, followed by Yangzhou and Hefei. The distribution of DI's in Yangzhou showed the best discrimination of FHB resistance in cultivars. Growing region and cultivar had significant effect on DI and mycotoxins. Among the climate factors, relative humidity and rainfall were the key factors resulting in the severe disease. Even though most cultivars were still susceptible to FHB under the strongly conducive conditions applied, the ratio of resistant lines increased in the Upper region of the Yangtze River (UYR) and the Middle and Lower Region of the Yangtze River (MLYR) between 2015 and 2019. Deoxynivalenol (DON) was the dominant mycotoxin found in Hefei and Yangzhou, while NIV was predominant in Nanping. Disease indexes were significantly correlated with DON content in wheat grain.

17.
Front Microbiol ; 13: 853176, 2022.
Article in English | MEDLINE | ID: mdl-35615520

ABSTRACT

Rhizosphere soil microorganisms have great agricultural importance. To explore the relationship between rhizosphere microorganisms and the disease incidence, and to optimize the concentration of difenoconazole fungicide for the control of wheat dwarf bunt, caused by Tilletia controversa Kühn, the rhizosphere microorganisms were characterized based on sequencing methods. We found that the disease incidence correlated with the relative abundance of some microbial communities, such as Acidobacteria, Nocardioides, Roseiflexaceae, Pyrinomonadaceae, and Gemmatimonadaceae. Actinobacteria showed significant differences in the infected soils when compared to the control soils, and the relative abundance of Acidobacteria, Pyrinomonadaceae, Gemmatimonadaceae, and Saccharimonadales populations was distinctly higher in the T. controversa-inoculated group than in the control group. The members of Dehalococcoidia, Nitrosomonadaceae, and Thermomicrobiales were found only in T. controversa-inoculated soils, and these taxa may have potential effects against the pathogen and contribute to disease control of wheat dwarf bunt. In addition, for T. controversa-infected plants, the soil treated with difenoconazole showed a high relative abundance of Proteobacteria, Actinobacteria, Ascomycota, Basidiomycota, Mortierellomycota, and Olpidiomycota based on the heatmap analysis and ANOVA. Our findings suggest that the optimized concentration of fungicide (5% recommended difenoconazole) exhibits better control efficiency and constant diversity in the rhizosphere soil.

18.
Plant Dis ; 106(11): 2940-2947, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35365051

ABSTRACT

Long-distance dispersal of plant pathogens in the air can establish diseases in other areas and lead to an increased risk of large-scale epidemics. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in China. Hubei is an important overwintering region for Pst in China, and this overwintering region is a determinant of stripe rust severity in eastern China. In 2017, stripe rust disease caused a pandemic in the Hubei region and resulted in great yield losses of wheat. To explain the disease pandemic, a total of 595 single-lesion samples of stripe rust were collected in spring, including 204 in five provinces in 2017 and 391 in four provinces in 2018, and genotyped with 13 simple sequence repeat makers. The samples were classified into 12 subpopulations based on the locations and year of collection. Genetic diversity was determined for the collection and each subpopulation. Differentiation and gene flow were determined between subpopulations. STRUCTURE analyses and discriminant analysis of principal components were conducted, and the results were used to infer the relationships between subpopulations. Our study revealed a new route of Pst transmission from the Yunnan-Guizhou Plateau to the Hubei region. The Pst inoculum of northwestern Hubei came from Gansu in the northwest, whereas the inoculum in southern Hubei came from the Yunnan-Guizhou Plateau via upper airflow. After the initial inocula infected wheat plants and multiplied in northern and southern Hubei, urediniospores produced in these regions further spread together along the middle reach of Hanshui Valley and made exchanges there. The finding of the new transmission route of Pst is important for improving integrated stripe rust disease management, which should have a profound impact on the balance of agricultural ecology in China.


Subject(s)
Basidiomycota , Plant Diseases , Plant Diseases/genetics , China , Basidiomycota/genetics , Triticum/genetics
19.
Pathogens ; 11(4)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35456153

ABSTRACT

The dynamic of soil-borne disease is closely related to the rhizosphere microbial communities. Maize-soybean relay strip intercropping has been shown to significantly control the type of soybean root rot that tends to occur in monoculture. However, it is still unknown whether the rhizosphere microbial community participates in the regulation of intercropped soybean root rot. In this study, rhizosphere Fusarium and Trichoderma communities were compared in either healthy or root-rotted rhizosphere soil from monocultured and intercropped soybean, and our results showed the abundance of rhizosphere Fusarium in intercropping was remarkably different from monoculture. Of four species identified, F. oxysporum was the most aggressive and more frequently isolated in diseased soil of monoculture. In contrast, Trichoderma was largely accumulated in healthy rhizosphere soil of intercropping rather than monoculture. T. harzianum dramatically increased in the rhizosphere of intercropping, while T. virens and T. afroharzianum also exhibited distinct isolation frequency. For the antagonism test in vitro, Trichoderma strains had antagonistic effects on F. oxysporum with the percentage of mycelial inhibition ranging from 50.59-92.94%, and they displayed good mycoparasitic abilities against F. oxysporum through coiling around and entering into the hyphae, expanding along the cell-cell lumen and even dissolving cell walls of the target fungus. These results indicate maize-soybean relay strip intercropping significantly increases the density and composition proportion of beneficial Trichoderma to antagonize the pathogenic Fusarium species in rhizosphere, thus potentially contributing to the suppression of soybean root rot under the intercropping.

20.
Front Plant Sci ; 13: 823907, 2022.
Article in English | MEDLINE | ID: mdl-35273625

ABSTRACT

Tilletia laevis Kühn [synonym T. foetida (Wallr.) Liro] can lead to a wheat common bunt, which is one of the most serious diseases affecting kernels, a serious reduction in grain yield, and losses can reach up to 80% in favorable environments. To understand how wheat tassels respond to T. laevis, based on an RNA-Seq technology, we analyzed a host transcript accumulation on healthy wheat tassels and on tassels infected by the pathogen. Our results showed that 7,767 out of 15,658 genes were upregulated and 7,891 out of 15,658 genes were downregulated in wheat tassels. Subsequent gene ontology (GO) showed that differentially expressed genes (DEGs) are predominantly involved in biological processes, cellular components, and molecular functions. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that 20 pathways were expressed significantly during the infection of wheat with T. laevis, while biosynthesis of amino acids, carbon metabolism, and starch and sucrose metabolism pathways were more highly expressed. Our findings also demonstrated that genes involved in defense mechanisms and myeloblastosis (MYB) transcription factor families were mostly upregulated, and the RNA-seq results were validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first report on transcriptomics analysis of wheat tassels in response to T. laevis, which will contribute to understanding the interaction of T. laevis and wheat, and may provide higher efficiency control strategies, including developing new methods to increase the resistance of wheat crops to T. laevis-caused wheat common bunt.

SELECTION OF CITATIONS
SEARCH DETAIL