Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 942
1.
Front Pharmacol ; 15: 1345070, 2024.
Article En | MEDLINE | ID: mdl-38799165

Background: Vandetanib is a small-molecule tyrosine kinase inhibitor. It exerts its therapeutic effects primarily in a range of lung cancers by inhibiting the vascular endothelial growth factor receptor 2. However, it remains unclear whether vandetanib has therapeutic benefits in other lung diseases, particularly asthma. The present study investigated the pioneering use of vandetanib in the treatment of asthma. Methods: In vivo experiments including establishment of an asthma model, measurement of airway resistance measurement and histological analysis were used primarily to confirm the anticontractile and anti-inflammatory effects of vandetanib, while in vitro experiments, including measurement of muscle tension and whole-cell patch-clamp recording, were used to explore the underlying molecular mechanism. Results: In vivo experiments in an asthmatic mouse model showed that vandetanib could significantly alleviate systemic inflammation and a range of airway pathological changes including hypersensitivity, hypersecretion and remodeling. Subsequent in vitro experiments showed that vandetanib was able to relax the precontracted rings of the mouse trachea via calcium mobilization which was regulated by specific ion channels including VDLCC, NSCC, NCX and K+ channels. Conclusions: Taken together, our study demonstrated that vandetanib has both anticontractile and anti-inflammatory properties in the treatment of asthma, which also suggests the feasibility of using vandetanib in the treatment of asthma by reducing abnormal airway contraction and systemic inflammation.

2.
J Infect Public Health ; 17(7): 102455, 2024 May 18.
Article En | MEDLINE | ID: mdl-38820891

BACKGROUND: Interdigital tinea pedis is the most common type of foot infection, which is often treated by topical or systemic antifungals. Due to the increase in antifungal resistance, antifungal socks are becoming potential alternatives for the daily management of tinea pedis. METHODS: In this study, antifungal fibres were adopted to produce interdigital hygiene socks to split the third and fourth toe seams of the feet. In vitro antifungal activity was first examined to verify the effectiveness of the socks. Preventive efficacy against tinea pedis was then evaluated among healthy participants, followed by therapeutic effect detection in patients diagnosed with tinea pedis by analysing the improvement in total symptom scores (TTS). RESULTS: The interdigital-type hygiene socks exhibited apparent antifungal activities in vitro. An in vivo study demonstrated significant preventive effects against tinea pedis for interdigital socks compared to plain socks (P = 0.011) and a lower TTS than noninterdigital (P = 0.04) or plain socks (P < 0.0001). Moreover, interdigital socks showed a total effectiveness rate of 72.9% in patients with tinea pedis, with most of the symptoms alleviated. CONCLUSION: Interdigital-type hygiene socks not only exhibited in vitro antifungal activities but also showed significant prophylactic and therapeutic effects against interdigital tinea pedis in vivo.

3.
Anal Chim Acta ; 1309: 342698, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772661

BACKGROUND: The lateral flow immunoassay (LFIA) is widely employed as a point-of-care testing (POCT) technique. However, its limited sensitivity hinders its application in detecting biomarkers with low abundance. Recently, the utilization of nanozymes has been implemented to enhance the sensitivity of LFIA by catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The catalytic performance of nanozymes plays a crucial role in influencing the sensitivity of LFIA. RESULTS: The Cornus officinalis Sieb. et Zucc-Pd@Pt (CO-Pd@Pt) nanozyme with good peroxidase-like activity was synthesized herein through a facile one-pot method employing Cornus officinalis Sieb. et Zucc extract as a reducing agent. The morphology and composition of the CO-Pd@Pt nanozyme were characterized using TEM, SEM, XRD, and XPS. As a proof of concept, the as-synthesized CO-Pd@Pt nanozyme was utilized in LFIA (CO-Pd@Pt-LFIA) for the detection of human chorionic gonadotropin (hCG). Compared to conventional gold nanoparticles-based LFIA (AuNPs-LFIA), CO-Pd@Pt-LFIA demonstrated a significant enhancement in the limit of detection (LOD, 0.08 mIU/mL), which is approximately 160 times lower than that of AuNPs-LFIA. Furthermore, experiments evaluating accuracy, precision, selectivity, interference, and stability have confirmed the practical applicability of CO-Pd@Pt-LFIA for hCG content determination. SIGNIFICANCE: The present study presents a novel approach for the synthesis of bimetallic nanozymes through environmentally friendly methods, utilizing plant extracts as both protective and reducing agents. Additionally, an easily implementable technique is proposed to enhance signal detection in lateral flow immunoassays.


Palladium , Platinum , Palladium/chemistry , Platinum/chemistry , Immunoassay/methods , Humans , Metal Nanoparticles/chemistry , Limit of Detection , Peroxidase/chemistry , Peroxidase/metabolism , Benzidines/chemistry , Catalysis , Oxidation-Reduction
4.
Anal Chem ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38771107

Illegal addition of drugs is common but seriously threatens public health safety. Conventional mass spectrometry methods are difficult to realize direct analysis of drugs existing in some complex matrices such as seawater or soil due to the ion suppression effect and contamination to MS parts caused by nonvolatile salts. In this work, a novel crystallization and solvent evaporation ionization mass spectrometry (CSEI-MS) method was constructed and developed to achieve rapid desalting detection. CSEI only consists of a heated plate and a nebulizer and exhibits excellent desalting performance, enabling direct analysis of six drugs dissolved in eight kinds of salt solutions (up to 200 mmol/L) and three complex salty matrices. Under optimized conditions, CSEI-MS presents high sensitivity, accuracy, linearity, and intraday and interday precision. Finally, this method is applied to the quantitative analysis of drugs in seawater, hand cream, and soil. Furthermore, the highly sensitive detection of CSEI-MS is demonstrated to remain even if the detection processes are conducted within 5 s via common commercial tools.

5.
ACS Nano ; 18(20): 13249-13265, 2024 May 21.
Article En | MEDLINE | ID: mdl-38720584

The therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE via multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes in vivo, restrained CD4+T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4+T cells. In addition, Dexlip-MSCs initiated cellular reprogramming by activating the glucocorticoid receptor (GR) signaling pathway to upregulate the expression of anti-inflammatory factors such as cysteine-rich secretory protein LCCL-containing domain 2 (CRISPLD2) and downregulate the expression of proinflammatory factors. In addition, Dexlip-MSCs synergistically increased the anti-inflammatory inhibitory effect of CD4+T cells through the release of dexamethasone liposomes or Dex-integrated MSC-derived exosomes (Dex-MSC-EXOs). Based on these synergistic biological effects, we demonstrated that Dexlip-MSCs alleviated disease progression in MRL/lpr mice more effectively than Dexlip or MSCs alone. These features indicate that our stem cell delivery strategy is a promising therapeutic approach for clinical SLE treatment.


Dexamethasone , Lupus Erythematosus, Systemic , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Dexamethasone/pharmacology , Dexamethasone/chemistry , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/immunology , Mice , Liposomes/chemistry , Mesenchymal Stem Cell Transplantation , Cell Proliferation/drug effects , Female , Mice, Inbred MRL lpr , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
6.
J Rheumatol ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38749557

OBJECTIVE: Although previous studies have explored the association of drinking with gout risk, the dose-response relationship was uncertain and the evidence between subtypes of alcoholic beverages and gout risk was limited. METHODS: The weekly alcoholic beverage consumption in the United Kingdom Biobank (UKB) was collected and calculated. The Cox regression model was applied to assess the impact of alcohol drinking and its subtypes on gout risk by calculating the hazard ratio (HR) and 95% confidence interval (CI). Besides, the restricted cubic splines were used to estimate the dose-response relationship between alcoholic drinking and gout risk. To evaluate the robustness, we performed subgroup analysis across various demographic characteristics. RESULTS: During a mean follow-up period of 11.70 years, a total of 5,728 newly incident gout cases were diagnosed among 331,865 participants. We found that light alcohol drinking was linked to a slight decrease in gout incidence among females (HR, 0.78; 95% CI, 0.65 to 0.94, P=0.01), whereas it showed no significant association in males. Moreover, the dose-response relationship showed that light red wine and fortified wine could reduce the gout risk, while beer, champagne plus white wine and spirits promoted the gout risk at any dose. CONCLUSION: Our study suggested a J-shaped dose-response relationship of drinking with gout risk in females rather than males. For specific alcoholic beverages, light consumption of red wine and fortified wine was associated with reduced gout risk. These findings offer new insights into the roles of alcoholic beverages in gout, while further validation is warranted.

7.
Waste Manag ; 184: 28-36, 2024 May 24.
Article En | MEDLINE | ID: mdl-38795538

Carbon fiber-reinforced polymer composites (CFRPs) have gained widespread usage due to their promising physiochemical properties, while this causes large amounts of waste CFRPs worldwide. In this study, carbon fibers were successfully recovered from waste CFRPs through the pyrolysis-oxidation method, and the recovered fibers were reused in remanufacturing the secondary generation CFRPs. Moreover, the individual and interactive effects of pyrolysis-oxidation recovering parameters on the mechanical strength of the resulting remanufactured CFRPs (reCFRPs) were investigated. The recovered carbon fibers displayed surface chemical structures similar to virgin fibers but with high contents of oxygen-containing bonds. The tensile strength retention (TSR) of the reCFRPs was primarily influenced by oxidation temperature. Notably, a higher oxidation temperature, especially exceeding 560 °C, amplified the impact of oxidation duration on the TSR value. Similarly, concerning interlaminar shear strength retention (ISSR), the oxidation stage had a more substantial effect compared to the pyrolysis stage. As the oxidation temperature increased from 500 °C to 600 °C, the ISSR value initially increased and then decreased, irrespective of variations in pyrolysis parameters. Additionally, through integrating the response surface methodology (RSM) analysis and multi-island genetic algorithm (MIGA) global optimization, three recovery strategies, along with the corresponding processing parameters, were proposed to meet diverse requirements. The conclusions could provide valuable insights for optimizing the recovery and reuse of carbon fibers from waste CFRPs.

8.
Materials (Basel) ; 17(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38793300

SnPb solder was widely used in electronic packaging for aerospace devices due to its high reliability. However, its creep resistance is poor and can be improved by adding alloying elements. The effects of Sb content on the microstructure, tensile, and creep properties of eutectic SnPb solder were investigated. Sb addition effectively improved the mechanical properties of the SnPb solder. When Sb content exceeds 1.7 wt.%, SbSn intermetallic compounds (IMCs) occurred. And increasing the Sb content increased the tensile strength. Furthermore, Sb addition decreased the steady-state creep rate and increased the stress exponent n, suggesting that the creep resistance had been enhanced, which may be attributed to the hindrance of dislocation movement by SbSn IMCs, as well as the reduction in phase boundaries, which consequently reduced grain boundary sliding.

9.
Alpha Psychiatry ; 25(2): 124-131, 2024 Mar.
Article En | MEDLINE | ID: mdl-38798800

Background: Pathophysiological mechanisms and related biological markers for post-stroke depression (PSD) are unknown. Some studies have noted that C-reactive protein (CRP) is activated in the serum of PSD patients. We aim to quantitatively summarize the concentrations of CRP in PSD patients compared to non-PSD patients. Methods: Original studies evaluating the association between CRP and PSD were searched in 4 specific databases from the establishment of the databases to March 2023. RevMan 5.20 and Stata 11.0 statistical software were used for meta-analysis. Publication bias was tested by Egger's test. The CRP level were combined by standardized mean difference (SMD) with 95% confidence interval (CI). Results: A total of 43 relevant literatures were retrieved, while 13 cohort studies were collected. The heterogeneity test result of the level of CRP in patients with PSD vs. non-PSD was (Q = 98.38, P < .001, I2 = 88%). The combined value of the estimated effect was [SMD = 0.34, 95% CI (0.12-0.56); P = .003]. Sensitivity analysis indicated that no study had a remarkable influence on the result of the pooled estimate. Egger's test was used to test the bias and the result was (Egger's test, P = .548), suggesting that there was no publication bias, and the results were credible. We found that different depression evaluation criteria (P = .035) and stroke types (P = .024) were considered as influencing factors for potential sources of heterogeneity. Conclusion: In conclusion, compared to those without depressive symptoms, patients with post-stroke depression have higher concentrations of CRP in the blood.

10.
Acta Biomater ; 181: 391-401, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704114

Potassium ion transport across myocardial cell membrane is essential for type 2 long QT syndrome (LQT2). However, the dysfunction of potassium ion transport due to genetic mutations limits the therapeutic effect in treating LQT2. Biomimetic ion channels that selectively and efficiently transport potassium ions across the cellular membranes are promising for the treatment of LQT2. To corroborate this, we synthesized a series of foldamer-based ion channels with different side chains, and found a biomimetic ion channel of K+ (BICK) with the highest transport activity among them. The selected BICK can restore potassium ion transport and increase transmembrane potassium ion current, thus shortening phase 3 of action potential (AP) repolarization and QT interval in LQT2. Moreover, BICK does not affect heart rate and cardiac rhythm in treating LQT2 model induced by E4031 in isolated heart as well as in guinea pigs. By restoring ion transmembrane transport tactic, biomimetic ion channels, such as BICK, will show great potential in treating diseases related to ion transport blockade. STATEMENT OF SIGNIFICANCE: Type 2 long QT syndrome (LQT2) is a disease caused by K+ transport disorder, which can cause malignant arrhythmia and even death. There is currently no radical cure, so it is critical to explore ways to improve K+ transmembrane transport. In this study, we report that a small-molecule biomimetic ion channel BICK can efficiently simulate natural K+ channel proteins on the cardiomyocyte and cure E4031-induced LQT2 in guinea pig by restoring K+ transport function for the first time. This study found that the potassium transmembrane transport by BICK significantly reduced the QT interval, which provides a conceptually new strategy for the treatment of LQT2 disease.


Long QT Syndrome , Potassium , Long QT Syndrome/metabolism , Animals , Potassium/metabolism , Guinea Pigs , Humans , Action Potentials/drug effects , Ion Transport/drug effects , Male , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Heart Rate/drug effects
11.
Clin Nutr ; 43(6): 1544-1550, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754306

Few prospective studies have investigated the joint effect of lifestyle factors and genetic susceptibility on the risk of irritable bowel syndrome (IBS). This study aims to evaluate the associations of lifestyle and genetic factors with incident IBS in the UK Biobank. We analyzed data from 481,057 participants (54% female) without prevalent IBS at enrollment in the UK Biobank. An overall healthy lifestyle was defined using six modifiable lifestyle factors, including smoking, body mass index (BMI), sleep duration, diet, physical activity, and alcohol consumption, and hence categorized into 'favorable', 'intermediate', and 'unfavorable' lifestyles. A Cox proportional hazard model was used to investigate the association between a healthy lifestyle and incident IBS. Furthermore, we constructed a polygenic risk score (PRS) for IBS and assessed whether lifestyle modified the effect of genetics on the development of IBS. During a median follow-up of 12.1 years, 8645 incident IBS were ascertained. Specifically, among the six modifiable lifestyle factors, adequate sleep demonstrates the greatest protective effect (hazard ratio [HR]: 0.72, 95% CI: 0.69,0.75) against IBS. Compared with a favorable lifestyle, an unfavorable lifestyle was associated with a 56% (95% CI: 46%-67%) increased risk of IBS (P = 8.99 × 10-40). The risk of incident IBS was 12% (95% CI: 4%-21%) higher among those at high genetic risk compared with those at low genetic risk (P = 0.005). When considering the joint effect of lifestyle and genetic susceptibility, the HR nearly doubled among individuals with high genetic risk and unfavorable lifestyle (HR: 1.80; 95% CI:1.51-2.15; P = 3.50 × 10-11) compared to those with low genetic risk and favorable lifestyle. No multiplicative or addictive interaction was observed between lifestyle and genetics. The findings from this study indicated that lifestyle and genetic factors were independently associated with the risk of incident IBS. All these results implicated a possible clinical strategy of lowering the incidence of IBS by advocating a healthy lifestyle.


Genetic Predisposition to Disease , Irritable Bowel Syndrome , Life Style , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/epidemiology , Female , Male , Prospective Studies , Middle Aged , Incidence , United Kingdom/epidemiology , Risk Factors , Adult , Proportional Hazards Models , Aged , Sleep/genetics , Healthy Lifestyle , Diet/statistics & numerical data
12.
Ultrasonics ; 141: 107340, 2024 May 09.
Article En | MEDLINE | ID: mdl-38744113

In this paper we propose a novel ultrasonic longitudinal wave resonance method for measuring the thickness of metal walls using a laser-electromagnetic acoustic transducer (Laser-EMAT). The method is based on the surface constraint mechanism (SCM) of the material and is expected to be capable of accurately detecting local thinning of metal walls in a non-contact manner and at high temperatures. Based on finite element analysis of laser-EMAT ultrasonic resonance measurement of aluminum alloy thickness, we investigated the effects of such key factors as SCM, irradiation parameters of laser source, and the size of EMAT receiving coil on the accuracy of thickness measurement (resonance frequency position) and on the amplitude of the resonance wave. Both numerical simulations and experiments are conducted to demonstrate that the measurement accuracy of the proposed method is not affected by SCM, irradiation laser source parameters, and EMAT receiving coil size, and that accurate detection of stepped aluminum plates with thickness thinning from 3.0 mm to 0.5 mm is achieved. Furthermore, we were able to perform rapid detection of aluminum thin plate thickness at 500 °C temperature with an EMAT lift-off of 5.0 mm and achieved a relative experimental error as small as 3.40 %. The results obtained in this study showed that the proposed method performed well in non-contact measurement of metal thinning in harsh environment of high temperature.

13.
Front Immunol ; 15: 1367734, 2024.
Article En | MEDLINE | ID: mdl-38680494

The aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by various ligands, including pollutants, microorganisms, and metabolic substances. It is expressed extensively in pulmonary and intestinal epithelial cells, where it contributes to barrier defense. The expression of AhR is pivotal in regulating the inflammatory response to microorganisms. However, dysregulated AhR expression can result in endocrine disorders, leading to immunotoxicity and potentially promoting the development of carcinoma. This review focuses on the crucial role of the AhR in facilitating and limiting the proliferation of pathogens, specifically in relation to the host cell type and the species of etiological agents involved in microbial pathogen infections. The activation of AhR is enhanced through the IDO1-AhR-IDO1 positive feedback loop, which is manipulated by viruses. AhR primarily promotes the infection of SARS-CoV-2 by inducing the expression of angiotensin-converting enzyme 2 (ACE2) and the secretion of pro-inflammatory cytokines. AhR also plays a significant role in regulating various types of T-cells, including CD4+ T cells and CD8+ T cells, in the context of pulmonary infections. The AhR pathway plays a crucial role in regulating immune responses within the respiratory and intestinal barriers when they are invaded by viruses, bacteria, parasites, and fungi. Additionally, we propose that targeting the agonist and antagonist of AhR signaling pathways could serve as a promising therapeutic approach for combating pathogen infections, especially in light of the growing prevalence of drug resistance to multiple antibiotics.


Basic Helix-Loop-Helix Transcription Factors , COVID-19 , Inflammation , Receptors, Aryl Hydrocarbon , SARS-CoV-2 , Receptors, Aryl Hydrocarbon/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , COVID-19/immunology , SARS-CoV-2/physiology , SARS-CoV-2/immunology , Animals , Signal Transduction , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
14.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38640682

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Biodegradation, Environmental , Cadmium , Nicotiana , Cadmium/toxicity , Cadmium/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Plants, Genetically Modified/metabolism
15.
Article En | MEDLINE | ID: mdl-38652413

The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.

16.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627624

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Brassica rapa , Brassica , Infertility, Male , RNA, Long Noncoding , Male , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Brassica/genetics , Gene Expression Profiling/methods , Transcriptome , Fertility , Gene Expression Regulation, Plant , Plant Infertility/genetics
17.
Sci Rep ; 14(1): 8106, 2024 04 06.
Article En | MEDLINE | ID: mdl-38582913

Wheat head detection and counting using deep learning techniques has gained considerable attention in precision agriculture applications such as wheat growth monitoring, yield estimation, and resource allocation. However, the accurate detection of small and dense wheat heads remains challenging due to the inherent variations in their size, orientation, appearance, aspect ratios, density, and the complexity of imaging conditions. To address these challenges, we propose a novel approach called the Oriented Feature Pyramid Network (OFPN) that focuses on detecting rotated wheat heads by utilizing oriented bounding boxes. In order to facilitate the development and evaluation of our proposed method, we introduce a novel dataset named the Rotated Global Wheat Head Dataset (RGWHD). This dataset is constructed by manually annotating images from the Global Wheat Head Detection (GWHD) dataset with oriented bounding boxes. Furthermore, we incorporate a Path-aggregation and Balanced Feature Pyramid Network into our architecture to effectively extract both semantic and positional information from the input images. This is achieved by leveraging feature fusion techniques at multiple scales, enhancing the detection capabilities for small wheat heads. To improve the localization and detection accuracy of dense and overlapping wheat heads, we employ the Soft-NMS algorithm to filter the proposed bounding boxes. Experimental results indicate the superior performance of the OFPN model, achieving a remarkable mean average precision of 85.77% in oriented wheat head detection, surpassing six other state-of-the-art models. Moreover, we observe a substantial improvement in the accuracy of wheat head counting, with an accuracy of 93.97%. This represents an increase of 3.12% compared to the Faster R-CNN method. Both qualitative and quantitative results demonstrate the effectiveness of the proposed OFPN model in accurately localizing and counting wheat heads within various challenging scenarios.


Agriculture , Triticum , Algorithms , Pyramidal Tracts , Resource Allocation
18.
Opt Express ; 32(7): 11886-11894, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38571026

A polarization beam-splitting multimode filter using pixelated waveguides has been presented and experimentally demonstrated in this paper. Finite difference time domain method and direct binary search optimization algorithm are employed to optimize pixelated waveguides to realize compact size, broad bandwidth, large extinction ratio, low insertion loss, and good polarization extinction ratio. Measurement results show that, in a wavelength range from 1520 to 1560 nm, for the fabricated device working at transverse-electric polarization, the measured insertion loss is less than 1.23 dB and extinction ratio is larger than 15.14 dB, while for transverse-magnetic polarization, the corresponding insertion loss lower than 0.74 dB and extinction ratio greater than 15.50 dB are realized. The measured polarization extinction ratio larger than 15.02 dB is achieved. The device's length is only 15.4 µm.

19.
Nano Lett ; 24(18): 5647-5655, 2024 May 08.
Article En | MEDLINE | ID: mdl-38655813

Anisotropic nanocrystals such as nanorods (NRs) display unique linearly polarized emission, which is expected to break the external quantum efficiency (EQE) limit of quantum dot-based light-emitting diodes (LEDs). However, the progress in achieving a higher EQE using NRs encounters several challenges, primarily involving a low photoluminescence quantum yield (PLQY) of NRs and imbalanced charge injection in NR-LEDs. In this work, we investigated NR-LEDs based on CdSe/CdZnS/ZnS rod-in-rod NRs with a high PLQY and higher linear polarization compared to those of dot-in-rod NRs. The balanced charge injection is achieved using ZnMgO nanoparticles as the electron transport layer and poly-TPD {poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine]} as the hole transport layer. Therefore, the NR-LEDs exhibit a maximum EQE of 21.5% and a maximum luminance of >120 000 cd/m2 owing to the high level of in-plane transitions with a dipole moment of 90%. The NR-LEDs also have greatly inhibited droop in EQE under a high current density as well as outstanding operation lifetime and cycle stability.

20.
Am J Gastroenterol ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38587286

INTRODUCTION: To investigate whether increased intrapancreatic fat deposition (IPFD) heightens the risk of diseases of the exocrine and endocrine pancreas. METHODS: A prospective cohort study was conducted using data from the UK Biobank. IPFD was quantified using MRI and a deep learning-based framework called nnUNet. The prevalence of fatty change of the pancreas (FP) was determined using sex- and age-specific thresholds. Associations between IPFD and pancreatic diseases were assessed with multivariate Cox-proportional hazard model adjusted for age, sex, ethnicity, body mass index, smoking and drinking status, central obesity, hypertension, dyslipidemia, liver fat content, and spleen fat content. RESULTS: Of the 42,599 participants included in the analysis, the prevalence of FP was 17.86%. Elevated IPFD levels were associated with an increased risk of acute pancreatitis (hazard ratio [HR] per 1 quintile change 1.513, 95% confidence interval [CI] 1.179-1.941), pancreatic cancer (HR per 1 quintile change 1.365, 95% CI 1.058-1.762) and diabetes mellitus (HR per 1 quintile change 1.221, 95% CI 1.132-1.318). FP was also associated with a higher risk of acute pancreatitis (HR 3.982, 95% CI 2.192-7.234), pancreatic cancer (HR 1.976, 95% CI 1.054-3.704), and diabetes mellitus (HR 1.337, 95% CI 1.122-1.593, P = 0.001). DISCUSSION: FP is a common pancreatic disorder. Fat in the pancreas is an independent risk factor for diseases of both the exocrine pancreas and endocrine pancreas.

...