Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Front Microbiol ; 14: 1171164, 2023.
Article in English | MEDLINE | ID: mdl-37180241

ABSTRACT

Species belonging to the genus Rahnella are dominant members of the core gut bacteriome of Dendroctonus-bark beetles, a group of insects that includes the most destructive agents of pine forest in North and Central America, and Eurasia. From 300 isolates recovered from the gut of these beetles, 10 were selected to describe an ecotype of Rahnella contaminans. The polyphasic approach conducted with these isolates included phenotypic characteristics, fatty acid analysis, 16S rRNA gene, multilocus sequence analyses (gyrB, rpoB, infB, and atpD genes), and complete genome sequencing of two isolates, ChDrAdgB13 and JaDmexAd06, representative of the studied set. Phenotypic characterization, chemotaxonomic analysis, phylogenetic analyses of the 16S rRNA gene, and multilocus sequence analysis showed that these isolates belonged to Rahnella contaminans. The G + C content of the genome of ChDrAdgB13 (52.8%) and JaDmexAd06 (52.9%) was similar to those from other Rahnella species. The ANI between ChdrAdgB13 and JaDmexAd06 and Rahnella species including R. contaminans, varied from 84.02 to 99.18%. The phylogenomic analysis showed that both strains integrated a consistent and well-defined cluster, together with R. contaminans. A noteworthy observation is the presence of peritrichous flagella and fimbriae in the strains ChDrAdgB13 and JaDmexAd06. The in silico analysis of genes encoding the flagellar system of these strains and Rahnella species showed the presence of flag-1 primary system encoding peritrichous flagella, as well as fimbriae genes from the families type 1, α, ß and σ mainly encoding chaperone/usher fimbriae and other uncharacterized families. All this evidence indicates that isolates from the gut of Dendroctonus-bark beetles are an ecotype of R. contaminans, which is dominant and persistent in all developmental stages of these bark beetles and one of the main members of their core gut bacteriome.

2.
Arch Microbiol ; 199(1): 97-104, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27557842

ABSTRACT

One Gram-negative, aerobic, motile, rod-shaped bacterium, designated as FH14T, was isolated from nodules of Phaseolus vulgaris grown in Hidalgo State of Mexico. Results based upon 16S rRNA gene (≥99.8 % similarities to known species), concatenated sequence (recA, atpD and glnII) analysis of three housekeeping genes (≤93.4 % similarities to known species) and average nucleotide identity (ANI) values of genome sequence (ranged from 87.6 to 90.0 % to related species) indicated the distinct position of strain FH14T within the genus Rhizobium. In analyses of symbiotic genes, only nitrogen fixation gene nifH was amplified that had nucleotide sequence identical to those of the bean-nodulating strains in R. phaseoli and R. vallis, while nodulation gene nodC gene was not amplified. The failure of nodulation to its original host P. vulgaris and other legumes evidenced the loss of its nodulation capability. Strain FH14T contained summed feature 8 (C18:1 ω6c/C18:1 ω7c, 59.96 %), C16:0 (10.6 %) and summed feature 2 (C12:0 aldehyde/unknown 10.928, 10.24 %) as the major components of cellular fatty acids. Failure to utilize alaninamide, and utilizing L-alanine, L-asparagine and γ-amino butyric acid as carbon source, distinguished the strain FH14T from the type strains for the related species. The genome size and DNA G+C content of FH14T were 6.94 Mbp and 60.8 mol %, respectively. Based on those results, a novel specie in Rhizobium, named Rhizobium hidalgonense sp. nov., was proposed, with FH14T (=HAMBI 3636T = LMG 29288T) as the type strain.


Subject(s)
Endophytes/isolation & purification , Phaseolus/microbiology , Rhizobium/isolation & purification , Root Nodules, Plant/microbiology , Soil Microbiology , Alanine/metabolism , Asparagine/metabolism , Bacterial Typing Techniques , Base Composition , Base Sequence , DNA, Bacterial/genetics , Endophytes/classification , Endophytes/genetics , Endophytes/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Mexico , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/classification , Rhizobium/genetics , Rhizobium/metabolism , Sequence Analysis, DNA , Soil/chemistry , Symbiosis
3.
Arch Microbiol ; 198(10): 941-956, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27290648

ABSTRACT

To evaluate the interactions among endophytes, plants and heavy metal/arsenic contamination, root endophytic bacteria of Prosopis laevigata (Humb and Bonpl. ex Willd) and Sphaeralcea angustifolia grown in a heavy metal(loid)-contaminated zone in San Luis Potosi, Mexico, were isolated and characterized. Greater abundance and species richness were found in Prosopis than in Sphaeralcea and in the nutrient Pb-Zn-rich hill than in the poor nutrient and As-Cu-rich mine tailing. The 25 species identified among the 60 isolates formed three groups in the correspondence analysis, relating to Prosopis/hill (11 species), Prosopis/mine tailing (4 species) and Sphaeralcea/hill (4 species), with six species ungrouped. Most of the isolates showed high or extremely high resistance to arsenic, such as ≥100 mM for As(V) and ≥20 mM for As(III), in mineral medium. These results demonstrated that the abundance and community composition of root endophytic bacteria were strongly affected by the concentration and type of the heavy metals and metalloids (arsenic), as well as the plant species.


Subject(s)
Bacteria/metabolism , Endophytes/isolation & purification , Fabaceae/microbiology , Malvaceae/microbiology , Metals, Heavy/metabolism , Prosopis/microbiology , Bacteria/isolation & purification , Endophytes/metabolism , Mexico , Mining , Phylogeny , Plant Roots/microbiology , Soil/chemistry
4.
Arch Microbiol ; 197(10): 1151-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26429721

ABSTRACT

A Gram-positive, aerobic, nonmotile strain, NM2E3(T) was identified as Brevibacterium based on the 16S rRNA gene sequence analysis and had the highest similarities to Brevibacterium jeotgali SJ5-8(T) (97.3 %). This novel bacterium was isolated from root tissue of Prosopis laegivata grown at the edge of a mine tailing in San Luis Potosí, Mexico. Its cells were non-spore-forming rods, showing catalase and oxidase activities and were able to grow in LB medium added with 40 mM Cu(2+), 72 mM As(5+) and various other toxic elements. Anteiso-C15:0 (41.6 %), anteiso-C17:0 (30 %) and iso-C15:0 (9.5 %) were the major fatty acids. MK-8(H2) (88.4 %) and MK-7(H2) (11.6 %) were the major menaquinones. The DNA G + C content of the strain NM2E3(T) was 70.8 mol % (Tm). DNA-DNA hybridization showed that the strain NM2E3(T) had 39.8, 21.7 and 20.3 % relatedness with B. yomogidense JCM 17779(T), B. jeotgali JCM 18571(T) and B. salitolerans TRM 45(T), respectively. Based on the phenotypic and genotypic analyses, the strain NM2E3(T) (=CCBAU 101093(T) = HAMBI 3627(T) = LMG 8673(T)) is reported as a novel species of the genus Brevibacterium, for which the name Brevibacterium metallicus sp. nov., is proposed.


Subject(s)
Brevibacterium/isolation & purification , Brevibacterium/metabolism , Metals, Heavy/metabolism , Plant Roots/microbiology , Prosopis/microbiology , Symbiosis/physiology , Bacterial Typing Techniques , Base Composition/genetics , Brevibacterium/classification , Brevibacterium/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Mexico , Mining , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analysis
5.
Int J Syst Evol Microbiol ; 64(Pt 5): 1501-1506, 2014 May.
Article in English | MEDLINE | ID: mdl-24478208

ABSTRACT

Three microbial strains isolated from common beans, 23C2T (Tunisia), Gr42 (Spain) and IE4868 (Mexico), which have been identified previously as representing a genomic group closely related to Rhizobium gallicum, are further studied here. Their 16S rRNA genes showed 98.5-99% similarity with Rhizobium loessense CCBAU 7190BT, R. gallicum R602spT, Rhizobium mongolense USDA 1844T and Rhizobium yanglingense CCBAU 71623T. Phylogenetic analysis based on recA, atpD, dnaK and thrC sequences showed that the novel strains were closely related and could be distinguished from the four type strains of the closely related species. Strains 23C2T, Gr42 and IE4868 could be also differentiated from their closest phylogenetic neighbours by their phenotypic and physiological properties and their fatty acid contents. All three strains harboured symbiotic genes specific to biovar gallicum. Levels of DNA-DNA relatedness between strain 23C2T and the type strains of R. loessense, R. mongolense, R. gallicum and R. yanglingense ranged from 58.1 to 61.5%. The DNA G+C content of the genomic DNA of strain 23C2T was 59.52%. On the basis of these data, strains 23C2T, Gr42 and IE4868 were considered to represent a novel species of the genus Rhizobium for which the name Rhizobium azibense is proposed. Strain 23C2T (=CCBAU 101087T=HAMBI3541T) was designated as the type strain.


Subject(s)
Nitrogen Fixation , Phaseolus/microbiology , Phylogeny , Rhizobium/classification , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Mexico , Molecular Sequence Data , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Rhizobium/metabolism , Sequence Analysis, DNA , Spain , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL