Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Int J Biol Macromol ; 274(Pt 1): 132645, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917581

ABSTRACT

Renewable natural fibers (e.g., cellulose nanocrystals (CNCs)) are being applied for reinforcing bio-based polylactic acid (PLA). For improvement in the interfacial compatibility between CNCs and PLA and the dispersibility of CNCs, a quaternary ammonium salt-coated CNCs (Q-CNCs) hybrid was prepared in this study based on an esterification self-polymerization method, and such hybrid was further utilized as a new strengthening/toughening nanofiller for producing the Q-CNCs-reinforced PLA composite. The results confirmed that quaternary ammonium salt coatings could efficiently enhance CNCs/PLA interfacial compatibility via mechanical interlocking and semi-interpenetrating networks. Attributing to the synergistic effect of quaternary ammonium salts and CNCs, a considerable enhancement in processing, mechanical, and thermal properties was gained in the obtained Q-CNCs-reinforced PLA composite. With the addition of 0.5 wt% Q-CNCs, the tensile strength, Young's modulus, and elongation at break of the Q-CNCs-reinforced PLA composite was raised by approximately 23 %, 37 % and 18 %, respectively; compared with pure PLA, the obtained composite had excellent bacteriostatic properties and good transparency. This work discusses the development of high-performance, low-cost and sustainable PLA-based composites on a potential application in packaging materials.

2.
RSC Adv ; 14(26): 18317-18329, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38860244

ABSTRACT

Wound management remains a challenge in clinical practice. Nowadays, patients have an increasing demand for wound repair with enhanced speed and quality; therefore, there is a great need to seek therapeutic strategies that can promote rapid and effective wound healing. In this study, we developed a carboxymethyl cellulose hydrogel loaded with l-carnosine (CRN@hydrogel) for potential application as a wound dressing. In vitro experiments confirmed that CRN@hydrogel can release over 80% of the drug within 48 h and demonstrated its favorable cytocompatibility and blood compatibility, thus establishing its applicability for safe utilization in clinical practice. Using a rat model, we found that this hydrogel could promote and accelerate wound healing more effectively. These results indicate that the novel hydrogel can serve as an efficient therapeutic strategy for wound treatment.

3.
Environ Res ; 257: 119298, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823616

ABSTRACT

Antibiotic resistance poses a considerable global public health concern, leading to heightened rates of illness and mortality. However, the impact of seasonal variations and environmental factors on the health risks associated with antibiotic resistance genes (ARGs) and their assembly mechanisms is not fully understood. Based on metagenomic sequencing, this study investigated the antibiotic resistome, mobile genetic elements (MGEs), and microbiomes in a subtropical coastal ecosystem of the Beibu Gulf, China, over autumn and winter, and explored the factors influencing seasonal changes in ARG and MGE abundance and diversity. Results indicated that ARG abundance and diversity were higher in winter than in autumn, with beta-lactam and multidrug resistance genes being the most diverse and abundant, respectively. Similarly, MGE abundance and diversity increased in winter and were strongly correlated with ARGs. In contrast, more pronounced associations between microbial communities, especially archaea, and the antibiotic resistome were observed in autumn than in winter. The co-occurrence network identified multiple interactions between MGEs and various multidrug efflux pumps in winter, suggesting a potential for ARG dissemination. Multivariate correlation analyses and path modeling indicated that environmental factors driving microbial community changes predominantly influenced antibiotic resistome assembly in autumn, while the relative importance of MGEs increased significantly in winter. These findings suggest an elevated health risk associated with antimicrobial resistance in the Beibu Gulf during winter, attributed to the dissemination of ARGs by horizontal gene transfer. The observed seasonal variations highlight the dynamic nature of antibiotic resistance dissemination in coastal ecosystems, emphasizing the need for comprehensive surveillance and management measures to address the growing threat of antimicrobial resistance in vulnerable environments.

4.
J Colloid Interface Sci ; 669: 104-116, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38705110

ABSTRACT

Aqueous zinc ion batteries (AZIBs) face significant challenges stemming from Zn dendrite growth and water-contact attack, primarily due to the lack of a well-designed solid electrolyte interphase (SEI) to safeguard the Zn anode. Herein, we report a bio-mass derived polymer of chitin on Zn anode (Zn@chitin) as a novel and robust artificial SEI layer to boost the Zn anode rechargeability. The polymeric chitin SEI layer features both zincophilic and hydrophobic characteristics to target the suppressed dendritic Zn formation as well as the water-induced side reactions, thus harvesting a dendrite-free and corrosion-resistant Zn anode. More importantly, this polymeric interphase layer is strong and flexible accommodating the volume changes during repeated cycling. Based on these benefits, the Zn@chitin anode demonstrates prolonged cycling performance surpassing 1300 h under an ultra-large current density of 20 mA cm-2, and a long cycle life of 680 h with a record-high zinc utilization rate of 80 %. Besides, the assembled Zn@chitin/V2O5 full batteries reveal excellent capacity retention and rate performance under practical conditions, proving the reliability of our proposed strategy for industrial AZIBs. Our research offers valuable insights for constructing high-performance AZIBs, and simultaneously realizes the high-efficient use of cheap biomass from a "waste-to-wealth" concept.

5.
Mol Ther ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582962

ABSTRACT

Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.

6.
Disabil Rehabil ; 46(8): 1502-1514, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37125688

ABSTRACT

PURPOSE: To identify parameters and measurement methods of exercise therapy adherence, as well as barriers and facilitators affecting adherence among children and adolescents with juvenile idiopathic arthritis (JIA). METHODS: Studies were eligible for inclusion if patients were 0-18 years of age, had JIA, and the focus of the research was on exercise therapy patterns, measurement/parameters of exercise adherence, and barriers/facilitators for exercise adherence. Two reviewers independently identified and categorized the barriers and facilitators to exercise therapy adherence using the International Classification of Functioning, Disability, and Health (ICF). RESULTS: Twenty articles were included in this review. Among patients with JIA, 29%-99% adhered to exercise therapy. The most commonly measured parameters of adherence were session completion and behavior component, with a self-report log serving as the most common means of assessment. Time pressure, symptoms related to JIA, lack of enjoyment, and insufficient motivation were the main barriers. Facilitators were commonly identified as adequate motivation, effective symptoms management, and social support. CONCLUSIONS: Future interventions should consider the identified factors to promote exercise engagement in children and adolescents with JIA. Strategies for promoting exercise adherence in children and adolescents with JIA is needed.


Despite its potential as an effective means of improving health and function in patients with juvenile idiopathic arthritis (JIA), the level of exercise participation in this population is not ideal.Future interventions should focus on improving personal factors associated with exercise therapy adherence, such as motivation.To facilitate the participation in the exercise of children and adolescents with JIA, supportive exercise environments should be provided.


Subject(s)
Arthritis, Juvenile , Child , Humans , Adolescent , Arthritis, Juvenile/therapy , Exercise Therapy/methods , Exercise , Patient Compliance , Self Report
7.
Chemistry ; 30(10): e202303461, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38050714

ABSTRACT

With the increasing demand for low-cost and high-safety portable batteries, aqueous zinc-ion batteries (ZIBs) have been regarded as a potential alternative to the lithium-ion batteries, bringing about extensive research dedicated in the exploration of high-performance and highly reversible ZIBs. Although separators are generally considered as non-active components in conventional research on ZIBs, advanced separators designs seem to offer effective solutions to the majority of issues within ZIBs system. These issues encompass concerns related to the zinc anode, cathode, and electrolyte. Initially, we delve into the origins and implications of various inherent problems within the ZIBs system. Subsequently, we present the latest research advancements in addressing these challenges through separators engineering. This includes a comprehensive, detailed exploration of various strategies, coupled with instances of advanced characterizations to provide a more profound insight into the mechanisms that influence the separators. Finally, we undertake a multi-criteria evaluation, based on application standards for diverse substrate separators, while proposing guiding principles for the optimal design of separators in zinc batteries. This review aims to furnish valuable guidance for the future development of advanced separators, thereby nurturing progress in the field of ZIBs.

8.
J Multidiscip Healthc ; 16: 3749-3759, 2023.
Article in English | MEDLINE | ID: mdl-38076587

ABSTRACT

Purpose: To identify the difficulties and burdens related to the experience of caring for children. Methods: A phenomenological approach was used in this qualitative study. Semi-structured and adolescents with idiopathic nephrotic syndrome (INS) in mainland China. Interviews lasting 35-90 minutes were conducted with 13 parental caregivers of youth with INS. The Colaizzi's analysis was used in data analysis. Results: The mean age of parental caregivers was 40.3 ± 6.1 years, and the average caregiving year of 3.2 ± 3.3 years. Most INS patients were male (69.2%), had a mean age of 7.6 ± 4.2 years. Based on the analysis of the data, five major themes emerged. These were: persistent emotional burden; neglected physical burden; overwhelming financial burden; absence of social support system and burden related to loss of normal life. Conclusion: Health professionals must develop strategies to provide stage-by-stage, targeted health education and psychological support services to parental caregivers of INS youth in China. The government must subsidize routine medications and frequent hospitalizations to minimize the financial burden on parental caregivers of INS youth. Moreover, anti-discrimination policies must be established to protect caregivers from explicit discrimination in public places.

9.
Clin Transl Med ; 13(11): e1465, 2023 11.
Article in English | MEDLINE | ID: mdl-37997519

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with major challenges in both prevention and therapy. Metformin, adenosine monophosphate-activated protein kinase (AMPK) activator, has been suggested to reduce the incidence of HCC when used for patients with diabetes in preclinical and clinical studies. However, the possible effects of metformin and their mechanisms of action in non-diabetic HCC have not been adequately investigated. METHODS: Fah-/-  mice were used to construct a liver-injury-induced non-diabetic HCC model for exploring hepatocarcinogenesis and therapeutic potential of metformin. Changes in relevant tumour and biochemical indicators were measured. Bulk and single-cell RNA-sequencing analyses were performed to validate the crucial role of proinflammatory/pro-tumour CD8+ T cells. In vitro and in vivo experiments were performed to confirm Cyp26a1-related antitumour mechanisms of metformin. RESULTS: RNA-sequencing analysis showed that chronic liver injury led to significant changes in AMPK-, glucose- and retinol metabolism-related pathways in Fah-/- mice. Metformin prevented the formation of non-diabetic HCC in Fah-/- mice with chronic liver injury. Cyp26a1 ddexpression in hepatocytes was significantly suppressed after metformin treatment. Moreover, downregulation of Cyp26a1 occurred in conjunction with increased levels of all-trans-retinoic acid (atRA), which is involved in the activation of metformin-suppressed hepatocarcinogenesis in Fah-/- mice. In contrast, both CD8+  T-cell infiltration and proinflammatory/pro-tumour cytokines in the liver were significantly upregulated in Fah-/- mice during chronic liver injury, which was notably reversed by either metformin or atRA treatment. Regarding mechanisms, metformin regulated the decrease in Cyp26a1 enzyme expression and increased atRA expression via the AMPK/STAT3/Gadd45ß/JNK/c-Jun pathway. CONCLUSIONS: Metformin inhibits non-diabetic HCC by upregulating atRA levels and downregulating CD8+ T cells. This is the first reporting that the traditional drug metformin regulates the metabolite atRA via the Cyp26a1-involved pathway. The present study provides a potential application of metformin and atRA in non-diabetic HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metformin , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Retinoic Acid 4-Hydroxylase/metabolism , Metformin/pharmacology , Metformin/therapeutic use , Down-Regulation , AMP-Activated Protein Kinases/metabolism , CD8-Positive T-Lymphocytes/metabolism , Tretinoin/pharmacology , Tretinoin/metabolism , Tretinoin/therapeutic use , Carcinogenesis , RNA
10.
Small ; 19(20): e2300130, 2023 May.
Article in English | MEDLINE | ID: mdl-36794300

ABSTRACT

Uncontrollable dendrite growth and sluggish ion-transport kinetics are considered as the main obstacles for the further development of high-performance aqueous zinc ion batteries (AZIBs). Here, a nature-inspired separator (ZnHAP/BC) is developed to tackle these issues via the hybridization of the biomass-derived bacterial cellulose (BC) network and nano-hydroxyapatite particles (HAP). The as-prepared ZnHAP/BC separator not only regulates the desolvation process of the hydrated Zn2+ ions (Zn(H2 O)6 2+ ) by suppressing the water reactivity through the surface functional groups, alleviating the water-induced side-reactions, but also boosts the ion-transport kinetics and homogenize the Zn2+ flux, resulting in a fast and uniform Zn deposition. Remarkably, the Zn|Zn symmetric cell with ZnHAP/BC separator harvests a long-term stability over 1600 h at 1 mA cm-2 , 1 mAh cm-2 and endures stable cycling over 1025 and 611 h even at a high depth of discharge (DOD) of 50% and 80%, respectively. The Zn|V2 O5 full cell with a low negative/positive (N/P) capacity ratio of 2.7 achieves a superior capacity retention of 82% after 2500 cycles at 10 A g-1 . Furthermore, the Zn/HAP separator can be totally degraded within 2 weeks. This work develops a novel nature-derived separator and provides insights in constructing functional separators toward sustainable and advanced AZIBs.

11.
Microbiol Spectr ; 11(1): e0368322, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36507672

ABSTRACT

Microbial communities in coastal waters are diverse and dynamic and play important roles in ecosystem functions and services. Despite the ecological impact of bacterioplankton or pathogens, little is known about whether bacterioplankton and pathogen communities exhibit similar patterns. Here, using 16S RNA gene amplicon sequencing, the geographic patterns and assembly processes of bacterioplankton and pathogen communities in 30 subtropical estuaries were studied. Results showed that the estuarine bacterioplankton communities mainly consisted of Proteobacteria (49.06%), Actinobacteria (17.62%), and Bacteroidetes (16.33%), among which 31 pathogen genera (186 amplicon sequence variants [ASVs]) were identified. Under the influence of salinity, bacterioplankton and pathogens showed similar biogeographic patterns. Redundancy and correlation analyses indicated that the bacterioplankton communities were strongly correlated with estuarine environmental factors, but potential pathogens were less influenced. Co-occurrence network analysis revealed a close relationship between bacterioplankton and potential pathogens, with two pathogens identified as connectors (i.e., ASV340 [Clostridium perfringens] and ASV1624 [Brevundimonas diminuta]), implying potential impacts of pathogens on structure, function, and stability of estuarine bacterioplankton communities. Null-model analysis revealed that deterministic processes (heterogeneous selection) dominated bacterioplankton community assembly, while stochastic processes (undominated effect) shaped the potential pathogen community. Our findings illustrate the biogeographic patterns and community assembly mechanisms of bacterioplankton and pathogens in estuaries, which should provide guidance and a reference for the control of potential pathogenic bacteria. IMPORTANCE Bacterioplankton play an important role in estuarine ecosystem functions and services; however, potentially pathogenic bacteria may exhibit infectivity and pose a serious threat to environmental and human health. In this study, geographic patterns and assembly processes of bacterioplankton communities in 30 subtropical estuaries were explored, and potential pathogenic bacteria in the estuaries were detected and profiled. Our results demonstrate here that bacterioplankton and pathogens show similar biogeographic patterns under the influence of salinity. Interestingly, heterogeneous selection dominated bacterioplankton assembly, while stochasticity dominated pathogen assembly. This study provides important information for future risk assessment of potential pathogenic bacteria as well as management in estuarine ecosystems.


Subject(s)
Ecosystem , Microbiota , Humans , Estuaries , Microbiota/genetics , Bacteria/genetics , Proteobacteria , Aquatic Organisms
12.
Exp Cell Res ; 421(2): 113408, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36334792

ABSTRACT

Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) were reported to have therapeutic potential in degenerative diseases. This study aimed to explore the effects of BMSC-Exos on inhibiting M1 macrophage polarization, reducing excessive nucleus pulposus cells (NPCs) apoptosis, and inhibiting ECM degradation during intervertebral disc degeneration (IDD). Rat IDD models were established by acupuncture. For the co-culture experiment, we used BMSC-Exo or human monocyte leukemia (THP-1) medium to incubate THP-1 or NPCs, respectively. BMSC-Exo was isolated from the BMSC medium, identified by TEM and NTA, and injected into the intervertebral discs of IDD rats. The macrophage infiltration in intervertebral disc tissue was evaluated by immunohistochemistry and immunofluorescence. ELISA was used to measure the levels of TNF-α, IL-6 and IL-10. The ECM degradation was analyzed by Western blot. The cell proportion and apoptosis were measured by flow cytometry. The morphological change of the intervertebral disc was analyzed by HE and safranin O fixation staining. In intervertebral disc tissues of IDD rats, we found the increased infiltration of M1 macrophages, with upregulated iNOS, TNF-α and IL-6 levels. Compared with BMSCs, the expression of CAHM in BMSC-Exo was significantly higher. Using co-cultured experiments, we proved that BMSC-Exo reduced apoptosis and ECM degradation of NPCs by inhibiting M1-type macrophage polarization by delivering CAHM. In addition, BMSC-Exo could improve IDD in vivo, including increased proteoglycan content, reduced macrophage infiltration and ECM degradation, and decrease expression of inflammatory factors by delivering CAHM. In conclusion, BMSC-Exo delivered exogenous CAHM via exosomes to regulate macrophage polarization and ameliorate IDD.


Subject(s)
Exosomes , Intervertebral Disc Degeneration , Intervertebral Disc , Mesenchymal Stem Cells , Nucleus Pulposus , RNA, Long Noncoding , Rats , Humans , Animals , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Exosomes/metabolism , RNA, Long Noncoding/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Mesenchymal Stem Cells/metabolism , Nucleus Pulposus/metabolism , Intervertebral Disc/metabolism , Apoptosis , Macrophages/metabolism
13.
Front Pharmacol ; 13: 958022, 2022.
Article in English | MEDLINE | ID: mdl-36176437

ABSTRACT

It is worth noting that neuroinflammation is well recognized as a symptom of neurodegenerative diseases (NDs). The regulation of neuroinflammation becomes an attractive focus for innovative ND treatment technologies. There is evidence that IL-22 is associated with the development and progression of a wide assortment of NDs. For example, IL-22 can activate glial cells, causing them to generate pro-inflammatory cytokines and encourage lymphocyte infiltration in the brain. IL-22 mRNA is highly expressed in Alzheimer's disease (AD) patients, and a high expression of IL-22 has also been detected in the brains of patients with other NDs. We examine the role of IL-22 in the development and treatment of NDs in this review, and we believe that IL-22 has therapeutic potential in these diseases.

14.
Cell Oncol (Dordr) ; 45(6): 1053-1071, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36087253

ABSTRACT

Abnormal CDK4/6-Rb-E2F signal transduction is a common finding in tumors and is a driving factor for the excessive proliferation of various tumor cells. PD-0332991, a highly specific, small molecule inhibitor for CDK4 and 6, has been shown to inhibit tumor growth by abrogating the phosphorylating capacity of CDK4/6 and suppressing Rb phosphorylation. It has been promoted for the treatment of breast cancer and potentially for other tumor types such as liver cancers, lung cancers and sarcomas. Due to the risk of monotherapy resistance, PD-0332991 is commonly used in combination with other drugs. Such combination treatments have proved able to inhibit tumor proliferation more effectively, induce stronger senescence and apoptosis, and enhance the efficiency of immunotherapy. Therefore, tumor cells with senescence induced by PD-0332991 are now used as ideal screening tools of cytolytic drugs with more efficient and thorough anti-tumor properties. With more extensive understandings about the branching points between senescence and apoptosis, it is possible to refine the dosage of PD-0332991. Better characterization of resistant cells, of inhibitors and of adverse effects such as leukopenia are needed to overcome obstacles in the use of PD-0332991. In this review of PD-0332991 research, we hope to provide guidance of transitions from laboratory findings to clinical applications of PD-0332991 and to facilitate PD-0332991-based multi-inhibitor combination therapies for various tumors.


Subject(s)
Breast Neoplasms , Protein Kinase Inhibitors , Female , Humans , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
15.
Front Pharmacol ; 13: 958146, 2022.
Article in English | MEDLINE | ID: mdl-36091786

ABSTRACT

DNA methylation is one of the most essential epigenetic mechanisms to regulate gene expression. DNA methyltransferases (DNMTs) play a vital role in DNA methylation in the genome. In mammals, DNMTs act with some elements to regulate the dynamic DNA methylation patterns of embryonic and adult cells. Conversely, the aberrant function of DNMTs is frequently the hallmark in judging cancer, including total hypomethylation and partial hypermethylation of tumor suppressor genes (TSGs), which improve the malignancy of tumors, aggravate the ailment for patients, and significantly exacerbate the difficulty of cancer therapy. Since DNA methylation is reversible, currently, DNMTs are viewed as an important epigenetic target for drug development. However, the impression of DNMTs on cancers is still controversial, and therapeutic methods targeting DNMTs remain under exploration. This review mainly summarizes the relationship between the main DNMTs and cancers as well as regulatory mechanisms and clinical applications of DNMTs in cancer and highlights several forthcoming strategies for targeting DNMTs.

16.
Sci Total Environ ; 810: 152263, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34896510

ABSTRACT

Estuaries are resistome hotspots owing to resistome accumulation and propagation at these locations from surrounding rivers, yet the large-scale biogeographic pattern of resistome, especially biocide and metal resistance genes (BMRGs) and its driving mechanisms in estuarine waters remains to be elucidated. Here, a metagenomics-based approach was firstly used to investigate resistome and mobilome profiles in waters from 30 subtropical estuaries, South China. The Pearl River estuaries had a higher diversity and abundance of antibiotic resistance genes (ARGs), BMRGs, and mobile genetic elements (MGEs) when compared with estuaries from east and west regions. Genes resistant to multiple antibiotics, metals, and biocides were the most abundant gene types in the resistome. The abundance of MGEs (e.g., intI1, IS91, and tnpA) was highly associated with the total abundance of resistance genes, suggesting their utility as potential indicators for quantitative estimations of the resistome contamination. Further, MGEs contributed more than bacterial communities in shaping the resistome in subtropical estuaries. Physicochemical factors (e.g., pH) regulated MGE composition and stochastic assembly, which mediated the co-selection of ARGs and BMRGs via horizontal gene transfer. Our findings have important implications and provide a reference on the management of ARGs and BMRGs in subtropical estuarine ecosystems.


Subject(s)
Estuaries , Metagenomics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Ecosystem , Genes, Bacterial
17.
Zookeys ; 1104: 177-201, 2022.
Article in English | MEDLINE | ID: mdl-36761927

ABSTRACT

Caridinastellata sp. nov. is described from streams in Guangxi, south-western China. The new species clearly belongs to "Caridinaserrata group" of the genus and shows a morphological similarity with C.cantonensis Yu, 1938, C.serrata Stimpson, 1860 and C.pacboDo et al. 2020. Caridinastellata is distinguished from congeners, based on differences in its male first pleopod and appendix masculina morphology, along with COI and 16S rRNA molecular evidence. The first pleopod endopod in male is rectangle, about 0.70 × length of exopod, about 3.7-3.9 × as long as proximally wide, inner margin concave, bearing nearly equal spine setae, outer margin bearing nearly equal long and dense spine setae; appendix interna well developed, arising from distal 1/5 of endopod, reaching to end of endopod, with cincinuli distally. The new species displays a unique and brightly coloured pattern and, therefore, can be easily recognised in the field. Liang & Zhou, 1993 described C.cavernicola from the Lenggu Cave, Du'an County, Guangxi. However, the description was based exclusively on two females. We have collected specimens of both sexes near the type locality and describe herein the previously unknown male and present morphological data on females. Data on the habitat, ecology and levels of threat of the two species are provided and suggest that they should be categorised as vulnerable (VU) under the current IUCN Criteria.

18.
Front Pharmacol ; 12: 727956, 2021.
Article in English | MEDLINE | ID: mdl-34675805

ABSTRACT

A member of the interleukin (IL)-1 superfamily was IL-36, which contained IL-36α, IL-36ß, IL-36γ, and IL-36Ra. Heterotrimer complexes, consisting of heterodimeric receptor complexes and IL-36 agonist, gave signals through intracellular functional domains, so as to bind to downstream proteins and induce inflammatory response. IL-36 agonists upregulated mature-associated CD80, CD86, MHCII, and inductively produced several pro-inflammatory cytokines through the IL-36R-dependent manner in dendritic cells (DCs). Besides, DCs had the ability to initiate the differentiation of helper T (Th) cells. Up to date, the role of IL-36 in immunity, inflammation and other diseases is of great importance. Additionally, autoimmune diseases were characterized by excessive immune response, resulting in damage and dysfunction of specific or multiple organs and tissues. Most autoimmune diseases were related to inflammatory response. In this review, we will conclude the recent research advances of IL-36 in the occurrence and development of autoimmune diseases, which may provide new insight for the future research and the treatment of these diseases.

20.
Front Mol Biosci ; 8: 542156, 2021.
Article in English | MEDLINE | ID: mdl-33681289

ABSTRACT

As a calcium ion-dependent chloride channel transmembrane protein 16A (TMEM16A) locates on the cell membrane. Numerous research results have shown that TMEM16A is abnormally expressed in many cancers. Mechanically, TMEM16A participates in cancer proliferation and migration by affecting the MAPK and CAMK signaling pathways. Additionally, it is well documented that TMEM16A exerts a regulative impact on the hyperplasia of cancer cells by interacting with EGFR in head and neck squamous cell carcinoma (HNSCC), an epithelial growth factor receptor in head and neck squamous cell carcinoma respectively. Meanwhile, as an EGFR activator, TMEM16A is considered as an oncogene or a tumor-promoting factor. More and more experimental data showed that down-regulation of TMEM16A or gene targeted therapy may be an effective treatment for cancer. This review summarized its role in various cancers and research advances related to its clinical application included treatment and diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...