Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.278
Filter
1.
Bone ; : 117196, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004161

ABSTRACT

Radial extracorporeal shockwave (r-ESW) and bone marrow stromal cells (BMSCs) have been reported to alleviate senile osteoporosis (SOP), but its regulatory mechanism remains unclear. In this study, we firstly isolated human BMSCs from bone marrow samples and treated with varying r-ESW doses. And we found that r-ESW could enhance the proliferation of SOP-BMSCs in a dose-dependent manner by EdU assay. Subsequently, the impact of r-ESW on the proliferation, apoptosis and multipotency of BMSCs was assessed. And the outcomes of flow cytometry, Alizarin red S (ARS), and tube formation test demonstrated that the optimal shockwave obviously boosted SOP-BMSCs osteogenesis and angiogenesis but exhibited no significant impact on cell apoptosis. Additionally, the signaling of Piezo1 and CaMKII/CREB was examined by Western blotting, qPCR and immunofluorescence. And the results showed that r-ESW promoted the expression of Piezo1, increased intracellular Ca2+ and activated the CaMKII/CREB signaling pathway. Then, the application of Piezo1 siRNA hindered the r-ESW-induced enhancement ability of osteogenesis coupling with angiogenesis of SOP-BMSCs. The use of the CaMKII/CREB signaling pathway inhibitor KN93 suppressed the Piezo1-induced increase in osteogenesis and angiogenesis in SOP-BMSCs. Finally, we also found that r-ESW might alleviate SOP in the senescence-accelerated mouse prone 6 (SAMP6) model by activating Piezo1. In conclusion, our research offers experimental evidence and an elucidated underlying molecular mechanism to support the use of r-ESW as a credible rehabilitative treatment for senile osteoporosis.

2.
Int J Pharm ; 661: 124408, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969264

ABSTRACT

This paper presents a numerical investigation to understand the transport and deposition of sprays emitted by an impinging-jet inhaler in the human respiratory tract under different inhalation flow rates. An injection model is used for the numerical simulations considering the spreading angles of the spray in the two directions, which are measured from experiments. The model parameter is adjusted to match the mean droplet size measured in the previous experiment. A time-varying sinusoidal inhalation flow rate is utilized as airflow conditions, which is closer to the actual situation when using an inhaler. The results demonstrate that the inhalation airflow rate significantly affects the spray's transport behavior and deposition results in the respiratory tract. Both excessively high and low inhalation flow rates lead to an increase in deposition in the mouth-throat. A moderate inhalation flow rate reduces throat deposition while maximizing lung deposition. Higher inhalation flow rates enable faster delivery of the droplets to the lungs, whereas lower inhalation flow rates achieve a more uniform deposition over time in the lungs. The amount of deposition in different parts of the lung lobes follows a fixed order. This study provides valuable insights for optimizing the inhalation flow rate conditions of the impinging-jet inhaler for clinical applications.

3.
Ultrason Sonochem ; 108: 106981, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981339

ABSTRACT

This study examined the impacts of ultrasonic power (0, 150, 300, 450, 600, and 750 W) and ultrasonic durations (3, 6, 9, 12, and 15 min) on the physicochemical properties and microstructure of diacylglycerol (DAG)-loaded emulsions stabilized with soybean protein isolate (SPI) and sodium alginate (SA). The findings indicated that the smallest particle size, zeta potential, and contact angle for SPI-SA-DAG emulsions were respectively 5.58 µm, -49.85 mV, and 48.65°, achieved at an ultrasonic power of 450 W. The emulsification properties, loss modulus, storage modulus, and apparent viscosity of the emulsions were optimal at this power setting and at a duration of 9 min. Analytical techniques, including confocal laser scanning-, scanning electron-, and atomic force microscopy, revealed that ultrasonication significantly altered emulsion aggregation state, with the surface roughness (Rq) being minimized at 450 W. These results demonstrated that the stability of SPI-SA-DAG emulsions can be effectively enhanced by an appropriate ultrasonic treatment at 450 W for 9 min. This research provides theoretical support for the broad application of sonication techniques in the food industry.

4.
Int J Ophthalmol ; 17(6): 1018-1027, 2024.
Article in English | MEDLINE | ID: mdl-38895677

ABSTRACT

AIM: To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS: Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS: EGF treatment for 24h induced a significant increase of ARPE-19 cells' viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells' viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION: Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).

5.
Foods ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38890986

ABSTRACT

Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) quinoline is used as a fluorescent group and electron donor, alongside the pyridinium salt group as an electron acceptor and the C=C bond as the sulfite-specific recognition group. We present a novel fluorescent sensor based on a mechanism that modulates the efficiency of intramolecular charge transfer (ICT), CY, for on-site quantitative measurement of sulfite in food. The fluorescent sensor itself exhibited fluorescence in the near-infrared light (NIR) region, effectively minimizing the interference of background fluorescence in food samples. Upon exposure to sulfite, the sensor CY displayed a ratiometric fluorescence response (I447/I692) with a high sensitivity (LOD = 0.061 µM), enabling accurate quantitative measurements in complex food environments. Moreover, sensor CY also displayed a colorimetric response to sulfite, making sensor CY measure sulfite in both fluorescence and colorimetric dual-signal modes. Sensor CY has been utilized for quantitatively measuring sulfite in red wine and sugar with recoveries between 99.65% and 101.90%, and the RSD was below 4.0%. The sulfite concentrations in live cells and zebrafish were also monitored via fluorescence imaging. Moreover, the sulfite assimilated by lettuce leaves was monitored, and the results demonstrated that excessive sulfite in leaf tissue could lead to leaf tissue damage. In addition, the sulfate-transformed sulfite in lettuce stem tissue was tracked, providing valuable insights for evaluating sulfur nutrients in food crops. More importantly, to accomplish the on-site quantitative measurement of sulfite in food samples, a portable sensing system was prepared. Sensor CY and the portable sensing system were successfully used for the on-site quantitative measurement of sulfite in food.

6.
JAMA Netw Open ; 7(6): e2415310, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38861260

ABSTRACT

Importance: Peceleganan spray is a novel topical antimicrobial agent targeted for the treatment of skin wound infections. However, its efficacy and safety remain unclear. Objective: To assess the safety and efficacy of peceleganan spray for the treatment of wound infections. Design, Setting, and Participants: This multicenter, open-label, phase 3 randomized clinical trial recruited and followed up 570 adult patients diagnosed with secondary open wound infections from 37 hospitals in China from August 23, 2021, to July 16, 2022. Interventions: Patients were randomized to 2 groups with a 2:1 allocation. One group received treatment with 2% peceleganan spray (n = 381) and the other with 1% silver sulfadiazine (SSD) cream (n = 189). Main Outcomes and Measures: The primary efficacy outcome was the clinical efficacy rate (the number of patients fulfilling the criteria for efficacy of the number of patients receiving the treatment) on the first day following the end of treatment (day 8). The secondary outcomes included the clinical efficacy rate on day 5 and the bacterial clearance rate (cases achieving negative bacteria cultures after treatment of all cases with positive bacteria cultures before treatment) on days 5 and 8. The safety outcomes included patients' vital signs, physical examination results, electrocardiographic findings, blood test results, and adverse reactions. Results: Among the 570 patients randomized to 1 of the 2 groups, 375 (98.4%) in the 2% peceleganan treatment group and 183 (96.8%) in the 1% SSD control group completed the trial (n = 558). Of these, 361 (64.7%) were men, and the mean (SD) age was 48.6 (15.3) years. The demographic characteristics were similar between groups. On day 8, clinical efficacy was achieved by 339 patients (90.4%) in the treatment group and 144 (78.7%) in the control group (P < .001). On day 5, clinical efficacy was achieved by 222 patients (59.2%) in the treatment group and 90 (49.2%) in the control group (P = .03). On day 8, bacterial clearance was achieved by 80 of 334 patients (24.0%) in the treatment group and in 75 of 163 (46.0%) in the control group (P < .001). On day 5, bacterial clearance was achieved by 55 of 334 patients (16.5%) in the treatment group and 50 of 163 (30.7%) in the control group (P < .001). The adverse events related to the application of peceleganan spray and SSD cream were similar. Conclusions and Relevance: This randomized clinical trial found that peceleganan spray is a safe topical antimicrobial agent with a satisfactory clinical efficacy rate for the treatment of skin wound infections, while the effectiveness of bacterial clearance remains uncertain. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2100047202.


Subject(s)
Wound Infection , Humans , Male , Female , Middle Aged , Adult , Wound Infection/drug therapy , Anti-Infective Agents, Local/therapeutic use , Anti-Infective Agents, Local/administration & dosage , China , Silver Sulfadiazine/therapeutic use , Silver Sulfadiazine/administration & dosage , Treatment Outcome , Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage
7.
Front Robot AI ; 11: 1356692, 2024.
Article in English | MEDLINE | ID: mdl-38863780

ABSTRACT

Soft grippers are garnering increasing attention for their adeptness in conforming to diverse objects, particularly delicate items, without warranting precise force control. This attribute proves especially beneficial in unstructured environments and dynamic tasks such as food handling. Human hands, owing to their elevated dexterity and precise motor control, exhibit the ability to delicately manipulate complex food items, such as small or fragile objects, by dynamically adjusting their grasping configurations. Furthermore, with their rich sensory receptors and hand-eye coordination that provide valuable information involving the texture and form factor, real-time adjustments to avoid damage or spill during food handling appear seamless. Despite numerous endeavors to replicate these capabilities through robotic solutions involving soft grippers, matching human performance remains a formidable engineering challenge. Robotic competitions serve as an invaluable platform for pushing the boundaries of manipulation capabilities, simultaneously offering insights into the adoption of these solutions across diverse domains, including food handling. Serving as a proxy for the future transition of robotic solutions from the laboratory to the market, these competitions simulate real-world challenges. Since 2021, our research group has actively participated in RoboSoft competitions, securing victories in the Manipulation track in 2022 and 2023. Our success was propelled by the utilization of a modified iteration of our Retractable Nails Soft Gripper (RNSG), tailored to meet the specific requirements of each task. The integration of sensors and collaborative manipulators further enhanced the gripper's performance, facilitating the seamless execution of complex grasping tasks associated with food handling. This article encapsulates the experiential insights gained during the application of our highly versatile soft gripper in these competition environments.

8.
Adv Mater ; : e2403551, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837826

ABSTRACT

Conventional wound closure methods, including sutures and tissue adhesives, present significant challenges for self-care treatment, particularly in the context of bleeding wounds. Existing stimuli-responsive contractile materials designed for autonomous wound closure frequently lack sufficient output work density to generate the force needed to bring the wound edges into proximity or necessitate stimuli that are not compatible with the human body. Here, semi-transparent, flexible, and water-responsive shrinkable films, composed of poly(ethylene oxide) and α-cyclodextrin, are reported. These films exhibit remarkable stability under ambient conditions and demonstrate significant contraction (≈50%) within 6 s upon exposure to water, generating substantial contractile stress (up to 6 MPa) and output work density (≈1028 kJ m-3), which is 100 times larger than that of conventional hydrogel and 25 times larger than that of skeletal muscles. Remarkably, upon hydration, these films are capable of lifting objects 10 000 times their own weight. Leveraging this technology, water-shrink tapes, which, upon contact with water, effectively constrict human skin and autonomously close bleeding wounds in animal models within 10 seconds, are developed further. This work offers a novel approach to skin wound management, showing significant potential for emergency and self-care scenarios.

9.
Nat Mater ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867019

ABSTRACT

Continuous and in situ detection of biomarkers in biofluids (for example, sweat) can provide critical health data but is limited by biofluid accessibility. Here we report a sensor design that enables in situ detection of solid-state biomarkers ubiquitously present on human skin. We deploy an ionic-electronic bilayer hydrogel to facilitate the sequential dissolution, diffusion and electrochemical reaction of solid-state analytes. We demonstrate continuous monitoring of water-soluble analytes (for example, solid lactate) and water-insoluble analytes (for example, solid cholesterol) with ultralow detection limits of 0.51 and 0.26 nmol cm-2, respectively. Additionally, the bilayer hydrogel electrochemical interface reduces motion artefacts by a factor of three compared with conventional liquid-sensing electrochemical interfaces. In a clinical study, solid-state epidermal biomarkers measured by our stretchable wearable sensors showed a high correlation with biomarkers in human blood and dynamically correlated with physiological activities. These results present routes to universal platforms for biomarker monitoring without the need for biofluid acquisition.

10.
Nature ; 630(8015): 84-90, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840015

ABSTRACT

Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks.


Subject(s)
Absorbable Implants , Brain , Hydrogels , Monitoring, Physiologic , Ultrasonic Waves , Wireless Technology , Animals , Male , Rats , Brain/physiology , Hydrogels/chemistry , Hydrogen-Ion Concentration , Injections/instrumentation , Intracranial Pressure , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Rats, Sprague-Dawley , Swine, Miniature , Temperature , Time Factors , Wireless Technology/instrumentation
11.
Mikrochim Acta ; 191(7): 403, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38888689

ABSTRACT

An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.


Subject(s)
Adenosine Triphosphate , Biosensing Techniques , CRISPR-Cas Systems , Cadmium Compounds , Electrochemical Techniques , Gold , Metal Nanoparticles , Quantum Dots , Biosensing Techniques/methods , Adenosine Triphosphate/analysis , Adenosine Triphosphate/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Cadmium Compounds/chemistry , Quantum Dots/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Tellurium/chemistry , Imidazoles/chemistry , CRISPR-Associated Proteins/chemistry , Limit of Detection , Zeolites/chemistry , Endodeoxyribonucleases/chemistry , Metal-Organic Frameworks/chemistry , Photochemical Processes , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
12.
Adv Mater ; : e2403444, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934554

ABSTRACT

Sense digitalization, the process of transforming sensory experiences into digital data, is an emerging research frontier that links the physical world with human perception and interaction. Inspired by the adaptability, fault tolerance, robustness, and energy efficiency of biological senses, this field drives the development of numerous innovative digitalization techniques. Neuromorphic bioelectronics, characterized by biomimetic adaptability, stand out for their seamless bidirectional interactions with biological entities through stimulus-response and feedback loops, incorporating bio-neuromorphic intelligence for information exchange. This review illustrates recent progress in sensory digitalization, encompassing not only the digital representation of physical sensations such as touch, light, and temperature, correlating to tactile, visual, and thermal perceptions, but also the detection of biochemical stimuli such as gases, ions, and neurotransmitters, mirroring olfactory, gustatory, and neural processes. It thoroughly examines the material design, device manufacturing, and system integration, offering detailed insights. However, the field faces significant challenges, including the development of new device/system paradigms, forging genuine connections with biological systems, ensuring compatibility with the semiconductor industry and overcoming the absence of standardization. Future ambition includes realization of biocompatible neural prosthetics, exoskeletons, soft humanoid robots, and cybernetic devices that integrate smoothly with both biological tissues and artificial components.

13.
Heliyon ; 10(11): e31691, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841510

ABSTRACT

Objective: Robotic surgery is increasingly utilized and common in general surgery training programs. This study sought to better understand the factors that influence resident operative autonomy in robotic surgery. We hypothesized that resident seniority, surgeon work experience, surgeon robotic-assisted surgery (RAS) case volume, and procedure type influence general surgery residents' opportunities for autonomy in RAS as measured by percentage of resident individual console time (ICT). Methods: General surgery resident ICT data for robotic cholecystectomy (RC), inguinal hernia (RIH), and ventral hernia (RVH) operations performed on the dual-console Da Vinci surgical robotic system between July 2019 and June 2021 were extracted. Cases with postgraduate year (PGY) 2-5 residents participating as a console surgeon were included. A sequential explanatory mixed-methods approach was undertaken to explore the ICT results and we conducted secondary qualitative interviews with surgeons. Descriptive statistics and thematic analysis were applied. Results: Resident ICT data from 420 robotic cases (IH 200, RC 121, and VH 99) performed by 20 junior residents (PGY2-3), 18 senior residents (PGY4-5), and 9 attending surgeons were extracted. The average ICT per case was 26.8 % for junior residents and 42.4 % for senior residents. Compared to early-career surgeons, surgeons with over 10 years' work experience gave less ICT to junior (18.2 % vs. 32.0 %) and senior residents (33.9 % vs. 56.6 %) respectively. Surgeons' RAS case volume had no correlation with resident ICT (r = 0.003, p = 0.0003). On average, residents had the most ICT in RC (45.8 %), followed by RIH (36.7 %) and RVH (28.6 %). Interviews with surgeons revealed two potential reasons for these resident ICT patterns: 1) Surgeon assessment of resident training year/experience influenced decisions to grant ICT; 2) Surgeons' perceived operative time pressure inversely affected resident ICT. Conclusions: This study suggests resident ICT/autonomy in RC, RIH, and RVH are influenced by resident seniority level, surgeon work experience, and procedure type, but not related to surgeon RAS case volume. Design and implementation of an effective robotic training program must consider the external pressures at conflict with increased resident operative autonomy and seek to mitigate them.

14.
15.
Nano Lett ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838340

ABSTRACT

Cancer immunotherapies based on cytotoxic CD8+ T lymphocytes (CTLs) are highly promising for cancer treatment. The specific interaction between T-cell receptors and peptide-MHC-I complexes (pMHC-I) on cancer cell membranes critically determines their therapeutic outcomes. However, the lack of appropriate endogenous antigens for MHC-I presentation disables tumor recognition by CTLs. By devising three antigen-loaded self-assembling peptides of pY-K(Ag)-ERGD, pY-K(Ag)-E, and Y-K(Ag)-ERGD to noncovalently generate light-activatable supramolecular antigens at tumor sites in different manners, we report pY-K(Ag)-ERGD as a promising candidate to endow tumor cells with pMHC-I targets on demand. Specifically, pY-K(Ag)-ERGD first generates low-antigenic supramolecular antigens on cancer cell membranes, and a successive light pulse allows antigen payloads to efficiently release from the supramolecular scaffold, directly producing antigenic pMHC-I. Intravenous administration of pY-K(Ag)-ERGD enables light-controlled tumor inhibition when combined with adoptively transferred antigen-specific CTLs. Our strategy is feasible for broadening tumor antigen repertoires for T-cell immunotherapies and advancing precision-controlled T-cell immunotherapies.

16.
J Vasc Surg ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906429

ABSTRACT

OBJECTIVE: Although multidisciplinary clinics improve outcomes in chronic limb-threatening ischemia (CLTI), their role in addressing socioeconomic disparities is unknown. Our institution treats patients with CLTI at both traditional general vascular clinics and a multidisciplinary Limb Preservation Program (LPP). The LPP is in a minority community, providing expedited care at a single facility by a consistent team. We compared outcomes within the LPP with our institution's traditional clinics and explored patients' perspectives on barriers to care to evaluate if the LPP might address them. METHODS: All patients undergoing index revascularization for CLTI from 2014 to 2023 at our institution were stratified by clinic type (LPP or traditional). We collected clinical and socioeconomic variables, including Area Deprivation Index (ADI). Patient characteristics were compared using χ2, Student t, or Mood median tests. Outcomes were compared using log-rank and multivariable Cox analysis. We also conducted semi-structured interviews to understand patient-perceived barriers. RESULTS: From 2014 to 2023, 983 limbs from 871 patients were revascularized; 19.5% of limbs were treated within the LPP. Compared with traditional clinic patients, more LPP patients were non-White (43.75% vs 27.43%; P < .0001), diabetic (82.29% vs 61.19%; P < .0001), dialysis-dependent (29.17% vs 13.40%; P < .0001), had ADI in the most deprived decile (29.38% vs 19.54%; P = .0061), resided closer to clinic (median 6.73 vs 28.84 miles; P = .0120), and had worse Wound, Ischemia, and foot Infection (WIfI) stage (P < .001). There were no differences in freedom from death, major adverse limb event (MALE), or patency loss. Within the most deprived subgroup (ADI >90), traditional clinic patients had earlier patency loss (P = .0108) compared with LPP patients. Multivariable analysis of the entire cohort demonstrated that increasing age, heart failure, dialysis, chronic obstructive pulmonary disease, and increasing WIfI stage were independently associated with earlier death, and male sex was associated with earlier MALE. Ten traditional clinic patients were interviewed via convenience sampling. Emerging themes included difficulty understanding their disease, high visit frequency, transportation barriers, distrust of the health care system, and patient-physician racial discordance. CONCLUSIONS: LPP patients had worse comorbidities and socioeconomic deprivation yet had similar outcomes to healthier, less deprived non-LPP patients. The multidisciplinary clinic's structure addresses several patient-perceived barriers. Its proximity to disadvantaged patients and ability to conduct multiple appointments at a single visit may address transportation and visit frequency barriers, and the consistent team may facilitate patient education and improve trust. Including these elements in a multidisciplinary clinic and locating it in an area of need may mitigate some negative impacts of socioeconomic deprivation on CLTI outcomes.

17.
Chem Rev ; 124(10): 6145-6147, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773952
18.
Medicine (Baltimore) ; 103(21): e38268, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788027

ABSTRACT

Renal cell carcinoma (RCC) stands among the top 10 malignant neoplasms with the highest fatality rates. It exhibits pronounced heterogeneity and robust metastatic behavior. Patients with RCC may present with solitary or multiple metastatic lesions at various anatomical sites, and their prognoses are contingent upon the site of metastasis. When deliberating the optimal therapeutic approach for a patient, thorough evaluation of significant risk factors such as the feasibility of complete resection, the presence of oligometastases, and the patient's functional and physical condition is imperative. Recognizing the nuanced differences in RCC metastasis to distinct organs proves advantageous in contemplating potential treatment modalities aimed at optimizing survival outcomes. Moreover, discerning the metastatic site holds promise for enhancing risk stratification in individuals with metastatic RCC. This review summarizes the recent data pertaining to the current status of different RCC metastatic sites and elucidates their role in informing clinical management strategies across diverse metastatic locales of RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/secondary , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Neoplasm Metastasis , Prognosis
19.
J Gastrointest Surg ; 28(7): 1089-1094, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703987

ABSTRACT

PURPOSE: The association between the age-adjusted Charlson Comorbidity Index (ACCI) and sarcopenia in patients with gastric cancer (GC) remains ambiguous. This study aimed to investigate the association between the ACCI and sarcopenia and the prognostic value in patients with GC after radical resection. In addition, this study aimed to develop a novel prognostic scoring system based on these factors. METHODS: Univariate and multivariate Cox regression analyses were used to determine prognostic factors in patients undergoing radical GC resection. Based on the ACCI and sarcopenia, a new prognostic score (age-adjusted Charlson Comorbidity Index and Sarcopenia [ACCIS]) was established, and its prognostic value was assessed. RESULTS: This study included 1068 patients with GC. Multivariate analysis revealed that the ACCI and sarcopenia were independent risk factors during the prognosis of GC (P = 0.001 and P < 0.001, respectively). A higher ACCI score independently predicted sarcopenia (P = 0.014). A high ACCIS score was associated with a greater American Society of Anesthesiologists score, higher pathologic TNM (pTNM) stage, and larger tumor size (all P < 0.05). Multivariate analysis demonstrated that the ACCIS independently predicted the prognosis for patients with GC (P < 0.001). By incorporating the ACCIS score into a prognostic model with sex, pTNM stage, tumor size, and tumor differentiation, we constructed a nomogram to predict the prognosis accurately (concordance index of 0.741). CONCLUSION: The ACCI score and sarcopenia are significantly correlated in patients with GC. The integration of the ACCI score and sarcopenia markedly enhances the accuracy of prognostic predictions in patients with GC.


Subject(s)
Gastrectomy , Sarcopenia , Stomach Neoplasms , Humans , Sarcopenia/complications , Stomach Neoplasms/surgery , Stomach Neoplasms/complications , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Male , Female , Prognosis , Middle Aged , Aged , Gastrectomy/adverse effects , Neoplasm Staging , Retrospective Studies , Risk Factors , Age Factors , Comorbidity , Tumor Burden , Adult , Aged, 80 and over , Proportional Hazards Models , Multivariate Analysis
20.
Calcif Tissue Int ; 115(1): 41-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743269

ABSTRACT

Previous observational studies have suggested that anti-Müllerian hormone (AMH) and reproductive factors are linked to reduced bone mineral density (BMD) and an increased risk of osteoporosis (OP) in women. However, related studies are limited, and these traditional observational studies may be subject to residual confounders and reverse causation, while also lacking a more comprehensive observation of various reproductive factors. Univariate and multivariate two-sample Mendelian randomization analyses were conducted to determine the causal associations of AMH levels and six reproductive factors with BMD and OP, using the random-effects inverse-variance weighted method. Heterogeneity was assessed using Cochran's Q-statistic, and sensitivity analyses were performed to identify causal correlations. Age at menarche (AAM) was negatively associated with total body BMD (TB-BMD) in females aged 45-60 and over 60 years, as well as with heel bone mineral density (eBMD). Conversely, age at natural menopause (ANM) was positively associated with TB-BMD in the same age ranges and with eBMD. ANM was only causally associated with self-reported OP and showed no significant correlation with definitively diagnosed OP. Neither AMH level nor other reproductive factors were significantly associated with a genetic predisposition to BMD at any age and OP. Later AAM and earlier ANM are significantly genetically causally associated with decreased BMD but not with OP. AMH levels, length of menstrual cycle, age at first birth, age at last birth, and number of live births, in terms of genetic backgrounds, are not causally related to BMD or OP.


Subject(s)
Anti-Mullerian Hormone , Bone Density , Mendelian Randomization Analysis , Osteoporosis , Humans , Anti-Mullerian Hormone/blood , Female , Bone Density/genetics , Bone Density/physiology , Middle Aged , Osteoporosis/genetics , Menopause/genetics , Menopause/blood , Genetic Predisposition to Disease , Menarche/genetics , Adult , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...