Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
Fish Shellfish Immunol ; : 109828, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134231

ABSTRACT

Vibrio parahaemolyticus (VP-AHPND) is regarded as one of the main pathogens that caused acute hepatopancreatic necrosis disease (AHPND) in the Pacific white shrimp Litopenaeus vannamei. PirAvp and PirBvp toxin proteins are the main pathogenic proteins of AHPND in shrimp. Knowledge about the mechanism of shrimp response to PirAvp or PirBvp toxin is very helpful for developing new prevention and control strategy of AHPND in shrimp. In this study, the pathological sections showed that after 4 h treatment, significant pathological changes were observed in the PirBvp treated group, and no obvious pathological changes was found in PirAvp treated group. In order to learn the mechanism of shrimp response to PirAvp and PirBvp, comparative transcriptome was applied to analyze the different expressions of genes in the hepatopancreas of shrimp after treatment with PirAvp or PirBvp. A total of 9978 differentially expressed genes (DEGs) were identified between PirAvp or PirBvp-treated and PBS control shrimp, including 6616 DEGs in the PirAvp treated group and 3362 DEGs in the PirBvp treated group. There were 2263 DEGs that were commonly expressed, 4353 DEGs were only expressed in PirAvp VS PBS group and 1099 DEGs were uniquely expressed in PirBvp VS PBS group. Among these DEGs, the anti-apoptosis related pathways and immune response related genes significantly expressed in the commonly expressed DEGs of PirAvp VS PBS group and PirBvp VS PBS group, and small GTPase-mediated signaling and DNA metabolic process might relate to the host special reaction towards PirAvp and PirBvp exposure. The data suggested that the differential expression of these immune and metabolic-related genes in hepatopancreas might contribute to the pathogenicity variations of shrimp to VP-AHPND. The identified genes in this study will be useful for clarifying the response mechanism of shrimp toward different toxins of VP-AHPND and will further provide molecular basis for understanding the pathogenic mechanism of VP-AHPND.

2.
Article in Chinese | MEDLINE | ID: mdl-38973036

ABSTRACT

Objective:To explore the correlation between the parameters of suppression head impulse paradigm(SHIMP) and changes in dizziness handicap inventory(DHI) scores. Additionally, to evaluate the degree of vertigo and prognosis of patients with acute vestibular neuritis through SHIMP parameters. Methods:Thirty-three patients with acute vestibular neuritis were enrolled for DHI evaluation, vHIT and SHIMP. A secondary DHI score were evaluated after after two weeks, once patients no longer exhibited spontaneous nystagmus. The decrease in the second DHI score was used as the efficacy index(EI). All patients were divided into significantly effective group, effective group and ineffective group based on EI. Differences of the VOR gain values of SHIMP and the anti-compensatory saccade were compared among the three groups. Results:There were 13 cases in the significant effective group, 11 cases in the effective group, and 9 cases in the ineffective group. ①The mean gain of the horizontal semicircular canal in the significant effective group, the effective group, and the ineffective group was(0.50±0.11), (0.44±0.12), and(0.34±0.08), respectively. The difference between the significant effective group and the ineffective group was statistically significant(P<0.01). The gain of horizontal semicircular canal was positively correlated with EI(r=0.538 5, P<0.01) 。②The occurrence rate of the anti-compensatory saccade in the significant effective group, the effective group, and the ineffective group was(51.23±19.59), (33.64±17.68), and(13.78±11.81), respectively. Pairwise comparisons between each group showed statistical significance(P<0.05). The occurrence rate of anti-compensatory saccade was positively correlated with EI(r=0.658 2, P<0.01). Conclusion:The horizontal semicircular canal gain and the occurrence rate of the anti-compensatory saccade in SHIMP for patients with acute vestibular neuritis were closely correlated with decrease in DHI score.


Subject(s)
Head Impulse Test , Vestibular Neuronitis , Humans , Vestibular Neuronitis/physiopathology , Vestibular Neuronitis/diagnosis , Head Impulse Test/methods , Female , Male , Dizziness , Acute Disease , Vertigo , Middle Aged , Prognosis , Adult , Semicircular Canals/physiopathology
3.
Mol Carcinog ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990091

ABSTRACT

Ovarian cancer (OCa) is the deadliest of all gynecological cancers. The standard treatment for OCa is platinum-based chemotherapy, such as carboplatin or cisplatin in combination with paclitaxel. Most patients are initially responsive to these treatments; however, nearly 90% will develop recurrence and inevitably succumb to chemotherapy-resistant disease. Recent studies have revealed that the epigenetic modifier lysine-specific histone demethylase 1A (KDM1A/LSD1) is highly overexpressed in OCa. However, the role of KDM1A in chemoresistance and whether its inhibition enhances chemotherapy response in OCa remains uncertain. Analysis of TCGA datasets revealed that KDM1A expression is high in patients who poorly respond to chemotherapy. Western blot analysis show that treatment with chemotherapy drugs cisplatin, carboplatin, and paclitaxel increased KDM1A expression in OCa cells. KDM1A knockdown (KD) or treatment with KDM1A inhibitors NCD38 and SP2509 sensitized established and patient-derived OCa cells to chemotherapy drugs in reducing cell viability and clonogenic survival and inducing apoptosis. Moreover, knockdown of KDM1A sensitized carboplatin-resistant A2780-CP70 cells to carboplatin treatment and paclitaxel-resistant SKOV3-TR cells to paclitaxel. RNA-seq analysis revealed that a combination of KDM1A-KD and cisplatin treatment resulted in the downregulation of genes related to epithelial-mesenchymal transition (EMT). Interestingly, cisplatin treatment increased a subset of NF-κB pathway genes, and KDM1A-KD or KDM1A inhibition reversed this effect. Importantly, KDM1A-KD, in combination with cisplatin, significantly reduced tumor growth compared to a single treatment in an orthotopic intrabursal OCa xenograft model. Collectively, these findings suggest that combination of KDM1A inhibitors with chemotherapy could be a promising therapeutic approach for the treatment of OCa.

4.
iScience ; 27(7): 110318, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39055918

ABSTRACT

Colorectal cancer (CRC) exhibits significant heterogeneity, impacting immunotherapy efficacy, particularly in immune desert subtypes. Neuromedin U receptor 1 (NMUR1) has been reported to perform a vital function in immunity and inflammation. Through comprehensive multi-omics analyses, we have systematically characterized NMUR1 across various tumors, assessing expression patterns, genetic alterations, prognostic significance, immune infiltration, and pathway associations at both the bulk sequencing and single-cell scales. Our findings demonstrate a positive correlation between NMUR1 and CD8+ T cell infiltration, with elevated NMUR1 levels in CD8+ T cells linked to improved immunotherapy outcomes in patients with CRC. Further, we have validated the NMUR1 expression signature in CRC cell lines and patient-derived tissues, revealing its interaction with key immune checkpoints, including lymphocyte activation gene 3 and cytotoxic T-lymphocyte-associated protein 4. Additionally, NMUR1 suppression enhances CRC cell proliferation and invasiveness. Our integrated analyses and experiments open new avenues for personalized immunotherapy strategies in CRC treatment.

5.
Biotechnol J ; 19(7): e2400180, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39014924

ABSTRACT

Traditional Chinese food therapies often motivate the development of modern medicines, and learning from them will bring bright prospects. Monascus, a conventional Chinese fungus with centuries of use in the food industry, produces various metabolites, including natural pigments, lipid-lowering substances, and other bioactive ingredients. Recent Monascus studies focused on the metabolite biosynthesis mechanisms, strain modifications, and fermentation process optimizations, significantly advancing Monascus development on a lab scale. However, the advanced manufacture for Monascus is lacking, restricting its scale production. Here, the synthetic biology techniques and their challenges for engineering filamentous fungi were summarized, especially for Monascus. With further in-depth discussions of automatic solid-state fermentation manufacturing and prospects for combining synthetic biology and process intensification, the industrial scale production of Monascus will succeed with the help of Monascus improvement and intelligent fermentation control, promoting Monascus applications in food, cosmetic, agriculture, medicine, and environmental protection industries.


Subject(s)
Fermentation , Monascus , Synthetic Biology , Monascus/metabolism , Monascus/genetics , Synthetic Biology/methods , Metabolic Engineering/methods , Industrial Microbiology/methods
6.
Int J Biol Macromol ; 274(Pt 2): 133790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992545

ABSTRACT

Using lignin as a raw material to prepare fluorescent nanomaterials represents a significant pathway toward the high-value utilization of waste biomass. In this study, Ni-doped lignin carbon dots (Ni-LCDs) were rapidly synthesized with a yield of 63.22 % and a quantum yield of 8.25 % using a green and simple hydrothermal method. Exploiting the inner filter effect (IFE), Cr(VI) effectively quenched the fluorescence of the Ni-LCDs, while the potent reducing agent ascorbic acid (AA) restored the quenched fluorescence, thus establishing a highly sensitive fluorescence switch sensor platform for the sequential detection of Cr(VI) and AA. Importantly, the integration of a smartphone facilitated the portability of Cr(VI) and AA detection, enabling on-site, in-situ, and real-time monitoring. Ultimately, the developed fluorescence and smartphone-assisted sensing platform was successfully applied to detect Cr(VI) in actual water samples and AA in various fruits. This study not only presents an efficient method for the conversion and utilization of waste lignin but also broadens the application scope of the CDs in the field of smart sensors.


Subject(s)
Ascorbic Acid , Carbon , Chromium , Lignin , Nickel , Quantum Dots , Smartphone , Chromium/analysis , Chromium/chemistry , Nickel/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Lignin/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Fluorescence
7.
Cell Biol Int ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080995

ABSTRACT

Peripheral nerve injury (PNI) often leads to significant functional impairment. Here, we investigated the impact of epidermal growth factor-like domain-containing protein 7 (EGFL7) on angiogenesis and nerve regeneration following PNI. Using a sciatic nerve injury model, we assessed nerve function using the sciatic nerve function index. We analyzed the expression levels of EGFL7, forkhead box proteins A1 (FOXA1), nerve growth factor (NGF), brain-derived neurotrophic factors (BDNF), Neurofilament 200 (NF200), myelin protein zero (P0), cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), and NOTCH-related proteins in tissues and cells. Cell proliferation, migration, and angiogenesis were evaluated through cell counting kit assays, 5-ethynyl-2'deoxyuridine staining, and Transwell assays. We investigated the binding of FOXA1 to the EGFL7 promoter using dual-luciferase assays and chromatin immunoprecipitation. We observed decreased EGFL7 expression and increased FOXA1 expression in PNI, and EGFL7 overexpression alleviated gastrocnemius muscle atrophy, increased muscle weight, and improved motor function. Additionally, EGFL7 overexpression enhanced Schwann cell and endothelial cell proliferation and migration, promoted tube formation, and upregulated NGF, BDNF, NF200, P0, CD31, and VEGF expression. FOXA1 was found to bind to the EGFL7 promoter region, inhibiting EGFL7 expression and activating the NOTCH signaling pathway. Notably, FOXA1 overexpression counteracted the effects of EGFL7 on Schwann cells and endothelial cells. In conclusion, EGFL7 holds promise as a therapeutic molecule for treating sciatic nerve injury.

8.
Pharmacol Res ; 205: 107259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871237

ABSTRACT

The osteopontin-derived peptide FOL-005 stimulates hair growth. Using ligand-receptor glyco-capture technology we identified neuropilin-1 (NRP-1), a known co-receptor for vascular endothelial growth factor (VEGF) receptors, as the most probable receptor for FOL-005 and the more stable analogue FOL-026. X-ray diffraction and microscale thermophoresis analysis revealed that FOL-026 shares binding site with VEGF in the NRP-1 b1-subdomain. Stimulation of human umbilical vein endothelial cells with FOL-026 resulted in phosphorylation of VEGFR-2, ERK1/2 and AKT, increased cell growth and migration, stimulation of endothelial tube formation and inhibition of apoptosis in vitro. FOL-026 also promoted angiogenesis in vivo as assessed by subcutaneous Matrigel plug and hind limb ischemia models. NRP-1 knock-down or treatment of NRP-1 antagonist EG00229 blocked the stimulatory effects of FOL-026 on endothelial cells. Exposure of human coronary artery smooth muscle cells to FOL-026 stimulated cell growth, migration, inhibited apoptosis, and induced VEGF gene expression and VEGFR-2/AKT phosphorylation by an NRP-1-dependent mechanism. RNA sequencing showed that FOL-026 activated pathways involved in tissue repair. These findings identify NRP-1 as the receptor for FOL-026 and show that its biological effects mimic that of growth factors binding to the VEGF receptor family. They also suggest that FOL-026 may have therapeutical potential in conditions that require vascular repair and/or enhanced angiogenesis.


Subject(s)
Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Neuropilin-1 , Osteopontin , Neuropilin-1/metabolism , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Animals , Neovascularization, Physiologic/drug effects , Osteopontin/metabolism , Osteopontin/genetics , Cell Movement/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Male , Peptides/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Apoptosis/drug effects , Mice, Inbred C57BL , Protein Binding , Ischemia/drug therapy , Ischemia/metabolism , Mice , Angiogenesis
9.
Biosensors (Basel) ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38920583

ABSTRACT

As a typical biomarker of Alzheimer's disease, rapid and specific detection of tau protein can help improve the early diagnosis and prognosis of the disease. In this study, a simple sandwich electrochemical immunosensor was developed for rapid detection of tau protein. Primary monoclonal antibodies (mAb1) against the middle domain of tau protein (amino acids 189-195) were immobilized on the gold electrode surface through a self-assembled monolayer (SAM) of 3,3'-dithiobis (sulfosuccinimidyl propionate) (DTSSP). Then the tau protein was captured through the specific adsorption between the antigen and the antibody, resulting in a change in the impedance. Secondary monoclonal antibodies (mAb2) against the N-terminal region of tau protein were used for further amplification of the binding reaction between mAb1 and tau protein. A linear correlation between the total change in impedance and the logarithm of tau concentration was found from 2 × 10-6 mg mL-1 to 2 × 10-3 mg mL-1, with a detection limit as low as 1 × 10-6 mg mL-1. No significant interference was observed from human serum albumin. Furthermore, the fabricated sandwich immunosensor successfully detected target tau protein in artificial cerebrospinal fluid (aCSF) samples, indicating good potential for clinical applications in the future.


Subject(s)
Alzheimer Disease , Biomarkers , Biosensing Techniques , Electrochemical Techniques , tau Proteins , Alzheimer Disease/diagnosis , Humans , Antibodies, Monoclonal , Gold/chemistry , Immunoassay/methods , Limit of Detection , Electrodes
10.
Fish Shellfish Immunol ; 151: 109691, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871138

ABSTRACT

Viral hemorrhagic septicemia virus (VHSV) poses a significant threat to the aquaculture industry, prompting the need for effective preventive measures. Here, we developed an inactivated VHSV and revealed the molecular mechanisms underlying the host's protective response against VHSV. The vaccine was created by treating VHSV with 0.05 % formalin at 16 °C for 48 h, which was determined to be the most effective inactivation method. Compared with nonvaccinated fish, vaccinated fish exhibited a remarkable increase in survival rate (99 %) and elevated levels of serum neutralizing antibodies, indicating strong immunization. To investigate the gene changes induced by vaccination, RNA sequencing was performed on spleen samples from control and vaccinated fish 14 days after vaccination. The analysis revealed 893 differentially expressed genes (DEGs), with notable up-regulation of immune-related genes such as annexin A1a, coxsackievirus and adenovirus receptor homolog, V-set domain-containing T-cell activation inhibitor 1-like, and heat shock protein 90 alpha class A member 1 tandem duplicate 2, indicating a vigorous innate immune response. Furthermore, KEGG enrichment analysis highlighted significant enrichment of DEGs in processes related to antigen processing and presentation, necroptosis, and viral carcinogenesis. GO enrichment analysis further revealed enrichment of DEGs related to the regulation of type I interferon (IFN) production, type I IFN production, and negative regulation of viral processes. Moreover, protein-protein interaction network analysis identified central hub genes, including IRF3 and HSP90AA1.2, suggesting their crucial roles in coordinating the immune response elicited by the vaccine. These findings not only confirm the effectiveness of our vaccine formulation but also offer valuable insights into the underlying immunological mechanisms, which can be valuable for future vaccine development and disease management in the aquaculture industry.


Subject(s)
Bass , Fish Diseases , Hemorrhagic Septicemia, Viral , Novirhabdovirus , Vaccines, Inactivated , Viral Vaccines , Animals , Novirhabdovirus/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Hemorrhagic Septicemia, Viral/prevention & control , Hemorrhagic Septicemia, Viral/immunology , Bass/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Immunity, Innate , Genotype , Vaccination/veterinary , Immunization/veterinary
11.
Bioresour Technol ; 406: 131041, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925404

ABSTRACT

To effectively treat actual ammonia-rich Chinese medicine residue (CMR) resource utilization wastewater, we optimized an anaerobic-microaerobic two-stage expanded granular sludge bed (EGSB) and moving bed sequencing batch reactor (MBSBR) combined process. By controlling dissolved oxygen (DO) levels, impressive removal efficiencies were achieved. Microaeration, contrasting with anaerobic conditions, bolstered dehydrogenase activity, enhanced electron transfer, and enriched the functional microorganism community. The increased relative abundance of Synergistetes and Proteobacteria facilitated hydrolytic acidification and fostered nitrogen and phosphorus removal. Furthermore, we examined the impact of DO concentration in MBSBR on pollutant removal and microbial metabolic activity, pinpointing 2.5 mg/L as the optimal DO concentration for superior removal performance and energy conservation.


Subject(s)
Ammonia , Bioreactors , Oxygen , Wastewater , Wastewater/chemistry , Oxygen/metabolism , Water Purification/methods , Biodegradation, Environmental , Sewage , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Phosphorus , Drugs, Chinese Herbal/pharmacology , Nitrogen
12.
Sci Adv ; 10(26): eado4390, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941471

ABSTRACT

Light-driven oxidative coupling of methane (OCM) for multi-carbon (C2+) product evolution is a promising approach toward the sustainable production of value-added chemicals, yet remains challenging due to its low intrinsic activity. Here, we demonstrate the integration of bismuth oxide (BiOx) and gold (Au) on titanium dioxide (TiO2) substrate to achieve a high conversion rate, product selectivity, and catalytic durability toward photocatalytic OCM through rational catalytic site engineering. Mechanistic investigations reveal that the lattice oxygen in BiOx is effectively activated as the localized oxidant to promote methane dissociation, while Au governs the methyl transfer to avoid undesirable overoxidation and promote carbon─carbon coupling. The optimal Au/BiOx-TiO2 hybrid delivers a conversion rate of 20.8 millimoles per gram per hour with C2+ product selectivity high to 97% in the flow reactor. More specifically, the veritable participation of lattice oxygen during OCM is chemically looped by introduced dioxygen via the Mars-van Krevelen mechanism, endowing superior catalyst stability.

13.
Appl Opt ; 63(15): 4044-4048, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38856496

ABSTRACT

We report on the design and fabrication of nearly polarization-insensitive angular filters, which have been developed through the optimization of one-dimensional A g/M g F 2 photonic crystals (PCs). We evaluate different initial systems for optimization and compare their results in terms of both the wavelength and angular selectivity. Our findings reveal that relaxing the strict periodic condition of initial photonic crystals with a small number of lattices has enabled improvement in the angular selectivity via Fabry-Perot resonances in dielectric layers, achieving a transmission as high as 81% at normal incidence by optimizing the dielectric layer thickness. The simulation results demonstrate that the transmitted beam through the angular filtering sample at 633 nm has allowable angles within 29° and 33° for TE and TM polarization, respectively, with a transmission over 80% at normal incidence. This proposed and demonstrated angular filter represents what we believe is a novel way to utilize 1D metal-dielectric PCs as polarization-insensitive angular filters, overcoming the main drawback of a low transmission. This angular filter will have significant applications in lighting, beam manipulation, optical coupling, and optical detectors.

14.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119773, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844182

ABSTRACT

Hepatocellular carcinoma (HCC), the leading cause of cancer-related deaths worldwide, is characterised by rapid growth and marked invasiveness. Accumulating evidence suggests that deubiquitinases play a pivotal role in HCC growth and metastasis. However, the expression of the deubiquitinase FAM188B and its biological functions in HCC remain unknown. The aim of our study was to investigate the potential role of FAM188B in HCC. The expression of FAM188B was significantly upregulated in liver cancer cells compared to normal liver cells, both at the transcriptional and translational levels. Similarly, FAM188B expression was higher in liver cancer tissues than in normal liver tissues. Bioinformatic analysis revealed that high FAM188B expression was associated with poor prognosis in patients with HCC. We further demonstrated that FAM188B knockdown inhibited cell proliferation, epithelial-mesenchymal transition, migration and invasion both in vitro and in vivo. Mechanistically, FAM188B knockdown significantly inhibited the hnRNPA1/PKM2 pathway in HCC cells. FAM188B may inhibit ubiquitin-mediated degradation of hnRNPA1 through deubiquitination. Notably, we observed that the inhibitory effects of FAM188B knockdown on HCC cell proliferation, migration and invasion were reversed when hnRNPA1 expression was restored. In conclusion, FAM188B promotes HCC progression by enhancing the deubiquitination of hnRNPA1 and subsequently activating the hnRNPA1/PKM2 pathway. Therefore, targeting FAM188B is a potential strategy for HCC therapy.

15.
Int J Biol Macromol ; 272(Pt 1): 132799, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830496

ABSTRACT

Peritrophic membrane (PM) is a pellicle structure present in the midgut of some invertebrates, such as insects and crustaceans. It could isolate harmful components and pathogens in food from intestinal epithelial cells; and it also plays a role in improving digestion and absorption efficiency. So PM is important for survival of its owner. In current study, 44 PM proteins were identified in Litopenaeus vannamei by PM proteome analysis. Among these PM proteins, the Peritrophin-44 homologous protein (LvPT44) was further studied. Chitin-binding assay indicated that LvPT44 could bind to colloidal chitin, and immunoeletron microscopy analysis shown that it was located to PM of L. vannamei. Furthermore, LvPT44 promoter was found to be activated by L. vannamei STAT and c-Jun. Besides, LvPT44 was induced by ER-stress as well as white spot syndrome virus infection. Knocked-down expression of LvPT44 by RNA inference increased the cumulative mortality of shrimp that caused by ER-stress or white spot syndrome virus. These results suggested that LvPT44 has an important role in disease resistance.


Subject(s)
Disease Resistance , Penaeidae , White spot syndrome virus 1 , Animals , Penaeidae/genetics , Penaeidae/virology , Penaeidae/metabolism , Disease Resistance/genetics , White spot syndrome virus 1/genetics , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Chitin/metabolism , Promoter Regions, Genetic/genetics , Gene Expression Regulation
16.
Food Res Int ; 187: 114343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763636

ABSTRACT

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Subject(s)
Filtration , Infant Formula , Mucus , Animals , Infant Formula/chemistry , Mucus/metabolism , Swine , Whey Proteins/metabolism , Intestine, Small/metabolism , Trypsin/metabolism , Humans , Goblet Cells/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Lactase/metabolism , Lactase/genetics , Mucin-2/metabolism , Mucin-2/genetics , Intestinal Mucosa/metabolism , Duodenum/metabolism , Jejunum/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Milk Proteins/metabolism , Milk Proteins/analysis
17.
Opt Express ; 32(6): 8804-8815, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571129

ABSTRACT

Though micro-light-emitting diode (micro-LED) displays are regarded as the next-generation emerging display technology, challenges such as defects in LED's light output power and radiation patterns are critical to the commercialization success. Here we propose an electroluminescence mass detection method to examine the light output quality from the on-wafer LED arrays before they are transferred to the display substrate. The mass detection method consists of two stages. In the first stage, the luminescent image is captured by a camera by mounting an ITO (indium-tin oxide) transparent conducting glass on the LED wafer. Due to the resistance of the ITO contact pads and on-wafer n-type electrodes, we develop a calibration method based on the circuit model to predict the current flow on each LED. The light output power of each device is thus calibrated back by multi-variable regression analysis. The analysis results in an average variation as low as 6.89% for devices predicted from luminescent image capturing and actual optical power measurement. We also examine the defective or non-uniform micro-LED radiation profiles by constructing a 2-D convolutional neural network (CNN) model. The optimized model is determined among three different approaches. The CNN model can recognize 99.45% functioning LEDs, and show a precision of 96.29% for correctly predicting good devices.

18.
JACS Au ; 4(4): 1550-1569, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665642

ABSTRACT

Dinitrosyl iron unit (DNIU), [Fe(NO)2], is a natural metallocofactor for biological storage, delivery, and metabolism of nitric oxide (NO). In the attempt to gain a biomimetic insight into the natural DNIU under biological system, in this study, synthetic dinitrosyl iron complexes (DNICs) [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) and [(NO)2Fe(µ-SCH2CH2COOCH3)2Fe(NO)2] (DNIC-COOMe) were employed to investigate the structure-reactivity relationship of mechanism and kinetics for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective heme oxygenase (HO)-1. After rapid cellular uptake of dinuclear DNIC-COOMe through a thiol-mediated pathway (tmax = 0.5 h), intracellular assembly of mononuclear DNIC [(NO)2Fe(SR)(SCys)]n-/[(NO)2Fe(SR)(SCys-protein)]n- occurred, followed by O2-induced release of free NO (tmax = 1-2 h) or direct transfer of NO to soluble guanylate cyclase, which triggered the downstream HO-1. In contrast, steady kinetics for cellular uptake of DNIC-COOH via endocytosis (tmax = 2-8 h) and for intracellular release of NO (tmax = 4-6 h) reflected on the elevated activation of cytoprotective HO-1 (∼50-150-fold change at t = 3-10 h) and on the improved survival of DNIC-COOH-primed mesenchymal stem cell (MSC)/human corneal endothelial cell (HCEC) under stressed conditions. Consequently, this study unravels the bridging thiolate ligands in dinuclear DNIC-COOH/DNIC-COOMe as a switch to control the mechanism, kinetics, and efficacy for cellular uptake of DNICs, intracellular delivery of NO, and activation of cytoprotective HO-1, which poses an implication on enhanced survival of postengrafted MSC for advancing the MSC-based regenerative medicine.

19.
Fish Shellfish Immunol ; 149: 109528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570119

ABSTRACT

Stimulator of interferon genes (STING) has been demonstrated as a critical mediator in the innate immune response to cytosolic DNA and RNA derived from different pathogens. While the role of Micropterus salmoides STING (MsSTING) in largemouth bass virus is still unknown. In this study, RT-qPCR assay and Western-blot assay showed that the expression levels of MsSTING and its downstream genes were up-regulated after LMBV infection. Pull down experiment proved that a small peptide called Fusion peptide (FP) that previously reported to target to marine and human STING as a selective inhibitor also interacted with MsSTING in vitro. Comparing with the RNA-seq of Largemouth bass infected with LMBV singly, 326 genes were significantly up-regulated and 379 genes were significantly down-regulated in the FP plus LMBV group in which Largemouth bass was treatment with FP before LMBV-challenged. KEGG analysis indicated that the differentially expressed genes (DEGs) were mainly related to signaling transduction, infectious disease viral, immune system and endocrine system. Besides, the survival rate of LMBV-infected largemouth bass was highly decreased following FP treatment. Taken together, our study showed that MsSTING played an important role in immune response against LMBV infection.


Subject(s)
Bass , Fish Diseases , Fish Proteins , Immunity, Innate , Animals , Fish Diseases/immunology , Fish Diseases/virology , Bass/immunology , Bass/genetics , Fish Proteins/genetics , Fish Proteins/immunology , Immunity, Innate/genetics , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects , Ranavirus/physiology , Membrane Proteins/genetics , Membrane Proteins/immunology
20.
Talanta ; 275: 126064, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38640519

ABSTRACT

Chinese Baijiu (Liquor) is a popular alcoholic beverage, and the ethanol content in Baijiu is closely related to its quality; therefore, it is of great significance to explore a facile, sensitive, and rapid method to detect ethanol content in Baijiu. Hydrophobic carbon quantum dots (H-CQDs) with bright red fluorescence (24.14 %) were fabricated by hydrothermal method using o-phenylenediamine, p-aminobenzoic acid, manganese chloride, and hydrochloric acid as reaction precursors. After the introduction of ultrapure water into the ethanol solution dissolved with H-CQDs, the aggregated H-CQDs resulted in significant changes in fluorescence intensity and absorbance. On this basis, a sensor for detecting ethanol by optical dual-mode and smartphone imaging was constructed. More importantly, the sensor can be used for detecting ethanol content in Chinese Baijiu with satisfactory results. This sensing platform has great potential for quality identification in Chinese Baijiu, broadening the application scope of CQDs in food safety detection.


Subject(s)
Alcoholic Beverages , Carbon , Hydrophobic and Hydrophilic Interactions , Quantum Dots , Smartphone , Quantum Dots/chemistry , Carbon/chemistry , Alcoholic Beverages/analysis , Ethanol/chemistry , Ethanol/analysis , Fluorescence , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL