Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Type of study
Publication year range
1.
Angew Chem Int Ed Engl ; : e202414118, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160140

ABSTRACT

Trap-assisted non-radiative recombination losses and moisture-induced degradation significantly impede the development of highly efficient and stable inverted (p-i-n) perovskite solar cells (PSCs), which require high-quality perovskite bulk. In this research, we mitigate these challenges by integrating thermally stable perovskite layers with Lewis base covalent organic frameworks (COFs). The ordered pore structure and surface binding groups of COFs facilitate cyclic, multi-site chelation with undercoordinated lead ions, enhancing the perovskite quality across both its bulk and grain boundaries. This process not only reduces defects but also promotes improved energy alignment through n-type doping at the surface. The inclusion of COF dopants in p-i-n devices achieves power conversion efficiencies (PCEs) of 25.64% (certified 24.94%) for a 0.0748-cm2 device and 23.49% for a 1-cm2 device. Remarkably, these devices retain 81% of their initial PCE after 978 hours of accelerated aging at 85˚C, demonstrating remarkable durability. Additionally, COF-doped devices demonstrate excellent stability under illumination and in moist conditions, even without encapsulation.

2.
Nat Commun ; 15(1): 5602, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961108

ABSTRACT

Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage, yet the underlying regulatory mechanisms remain elusive. Here, we show that trophoblast specific deletion of Kat8, a MYST family histone acetyltransferase, leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs), we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker, CDX2, via acetylating H4K16. Remarkably, CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover, increasing H4K16ac via using deacetylase SIRT1 inhibitor, EX527, restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8, CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth, which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL, shedding light on early gestational abnormalities.


Subject(s)
CDX2 Transcription Factor , Cell Proliferation , Cell Self Renewal , Histone Acetyltransferases , Trophoblasts , Trophoblasts/metabolism , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , Animals , Female , Humans , Mice , Pregnancy , Cell Self Renewal/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Mice, Knockout , Histones/metabolism , Cell Differentiation , Placentation/genetics
3.
Bone Joint Res ; 13(7): 332-341, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38964744

ABSTRACT

Aims: Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods: A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results: The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion: In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue.

4.
Nutrients ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064642

ABSTRACT

The policies regarding the mandatory fortification of food with folic acid (FA) may impact the effectiveness of folate-based B vitamin treatment on cognitive function in older adults. We critically and systematically review the literature to assess whether food fortification policies affect folate-based B vitamin treatment efficacy on cognition function in older adults. Electronic databases, including PubMed, Web of Science, and CNKI, were searched for "Cognitive Function", "Folate", and "Older Adults". The study had specific criteria for inclusion, which were as follows: (1) the studies should initially have randomized controlled trials that were conducted on older adults aged 60 or above; (2) the studies must assess the relationship between folate status and cognitive performance; and (3) the studies should clarify the policies regarding food fortification with FA. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines. Two reviewers independently extracted all the data, and any discrepancies were resolved by consensus. All the data collected were compiled, compared, and analyzed critically. Random effects models were used to assess the effects of interventions. The systematic review included fifty-one articles involving 42,768 participants. Of these, the 23 articles were included in the meta-analysis. The meta-analysis on the effects of folate-based B vitamin supplementation on cognitive function showed a significant overall impact (Z = 3.84; p = 0.0001; SMD, 0.18; 95% CI, 0.09, 0.28). Further analysis revealed that FA food fortification policies were not implemented in countries where folate-based B vitamin supplementation improved cognitive impairment in older adults (Z = 3.75; p = 0.0002; SMD, 0.27; 95% CI, 0.13, 0.40). However, the FA intervention did not have significant outcomes in areas where FA food fortification policies were mandatory (Z = 0.75; p = 0.45; SMD, 0.03; 95% CI, -0.06, 0.13). Supplementing with oral folic acid, alone or in combination, has been linked to improved cognitive performance in older adults. While mandatory FA fortification has the improved folic acid status, additional folate-based B vitamin supplements do not appear to influence cognitive function.


Subject(s)
Cognition , Folic Acid , Food, Fortified , Randomized Controlled Trials as Topic , Vitamin B Complex , Humans , Folic Acid/administration & dosage , Cognition/drug effects , Vitamin B Complex/administration & dosage , Vitamin B Complex/pharmacology , Aged , Dietary Supplements , Nutrition Policy , Female , Middle Aged , Male
5.
PLoS Genet ; 20(7): e1011357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074078

ABSTRACT

Hexokinase (HK) catalyzes the first irreversible rate-limiting step in glycolysis that converts glucose to glucose-6-phosphate. HK1 is ubiquitously expressed in the brain, erythrocytes, and other tissues where glycolysis serves as the major source of ATP production. Spermatogenic cell-specific type 1 hexokinase (HK1S) is expressed in sperm but its physiological role in male mice is still unknown. In this study, we generate Hk1s knockout mice using the CRISPR/Cas9 system to study the gene function in vivo. Hk1s mRNA is exclusively expressed in testes starting from postnatal day 18 and continuing to adulthood. HK1S protein is specifically localized in the outer surface of the sperm fibrous sheath (FS). Depletion of Hk1s leads to infertility in male mice and reduces sperm glycolytic pathway activity, yet they have normal motile parameters and ATP levels. In addition, by using in vitro fertilization (IVF), Hk1s deficient sperms are unable to fertilize cumulus-intact or cumulus-free oocytes, but can normally fertilize zona pellucida-free oocytes. Moreover, Hk1s deficiency impairs sperm migration into the oviduct, reduces acrosome reaction, and prevents capacitation-associated increases in tyrosine phosphorylation, which are probable causes of infertility. Taken together, our results reveal that HK1S plays a critical role in sperm function and male fertility in mice.


Subject(s)
Fertility , Hexokinase , Infertility, Male , Mice, Knockout , Sperm Capacitation , Spermatozoa , Tyrosine , Animals , Hexokinase/genetics , Hexokinase/metabolism , Male , Mice , Phosphorylation , Spermatozoa/metabolism , Sperm Capacitation/genetics , Infertility, Male/genetics , Infertility, Male/metabolism , Fertility/genetics , Tyrosine/metabolism , Female , Testis/metabolism , Sperm Motility/genetics , Glycolysis , Spermatogenesis/genetics
6.
Gerontology ; : 1-10, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38952108

ABSTRACT

INTRODUCTION: It is uncertain whether folic acid (FA) combined with docosahexaenoic acid (DHA) could improve cognitive performance. This study evaluated the effects of a 12-month FA and DHA supplementation, in combination or alone, on cognitive function, DNA oxidative damage, and mitochondrial function in participants with mild cognitive impairment (MCI). METHODS: This randomized, double-blind, placebo-controlled trial recruited MCI participants aged 60 years and older. Two hundred and eighty participants were randomly divided in equal proportion into four groups: FA + DHA (FA 800 µg/d + DHA 800 mg/d), FA (800 µg/d), DHA (800 mg/d), and placebo groups daily orally for 12 months. The primary outcome was cognitive function evaluated by the Wechsler Adult Intelligence Scale-Revised (WAIS-RC). Cognitive tests and blood mechanism-related biomarkers were determined at baseline and 12 months. RESULTS: During the 12-month follow-up, scores of full intelligence quotient (ßDHA: 1.302, 95% CI: 0.615, 1.990, p < 0.001; ßFA: 1.992, 95% CI: 1.304, 2.679, p < 0.001; ßFA+DHA: 2.777, 95% CI: 2.090, 3.465, p < 0.001), verbal intelligence quotient, and some subtests of the WAIS-RC were significantly improved in FA + DHA and single intervention groups compared to the placebo group. Moreover, the FA and DHA intervention combination was superior to either intervention alone (p < 0.001). Meanwhile, FA, DHA, and their combined use significantly decreased 8-OHdG level and increased mitochondrial DNA copy number compared to the placebo (p < 0.05). CONCLUSIONS: Supplementation of FA and DHA, alone or combined, for 12 months can improve cognitive function in MCI participants, possibly through mitigating DNA oxidative damage and enhancing mitochondrial function. Combined supplementation may provide more cognitive benefit than supplementation alone.

7.
Sci Adv ; 10(23): eadm9631, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838154

ABSTRACT

Short-wavelength infrared (SWIR) light detection plays a key role in modern technologies. Emerging solution-processed organic semiconductors are promising for cost-effective, flexible, and large-area SWIR organic photodiodes (OPDs). However, the spectral responsivity (R) and specific detectivity (D*) of SWIR OPDs are restricted by insufficient exciton dissociation and high noise current. In this work, we synthesized an SWIR small molecule with a spectral coverage of 0.3 to 1.3 micrometers peaking at 1100 nanometers. The photodiode, with optimized exciton dissociation, charge injection, and SWIR transmittance, achieves a record high R of 0.53 ampere per watt and D* of 1.71 × 1013 Jones at 1110 nanometers under zero bias. The D* at 1 to 1.2 micrometers surpasses that of the uncooled commercial InGaAs photodiode. Furthermore, large-area semitransparent all-organic upconversion devices integrating the SWIR photodiode realized static and dynamic SWIR-to-visible imaging, along with excellent upconversion efficiency and spatial resolution. This work provides alternative insights for developing sensitive organic SWIR detection.

8.
Inorg Chem ; 63(28): 12774-12784, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38935765

ABSTRACT

Alkane elimination reactions between the diamino- and dianilino-bridged tetrakis(phenolate) proligands 1a,b-H4 and precursors M(CH2SiMe3)3(THF)2, M(CH2C6H4-o-NMe2)3 (M = Sc and Y), and Hf(CH2Ph)4 were investigated. The diamino-bridged 1a-H4 afforded nonsymmetric complex 2a-Y2 incorporating two metal centers in different coordination environments. This one and other dinuclear compounds 2b-Sc2, 2a-Hf2, and 2b-Hf2 were characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction study (for 2a-Y2 and 2b-Sc2) and turned out to be symmetric in solution. Compound 2a-Y2, upon treatment with 2 equiv of 2-phenylpyridine, afforded symmetric bis(aryl) product 3a-Y2, which was authenticated by NMR spectroscopy and X-ray crystallography. The mechanism of its formation was studied by DFT computations and presumably involves a cooperative reorganization process within the nonsymmetric parent 2a-Y2 to afford a symmetric isomer prior to its reaction with 2-phenylpyridine.

9.
Circ Res ; 135(1): 93-109, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38770649

ABSTRACT

BACKGROUND: Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS: PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS: We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS: Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.


Subject(s)
Histone-Lysine N-Methyltransferase , Hypertension, Pulmonary , Hypoxia , Mitophagy , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , PPAR gamma , Pulmonary Artery , Rats, Sprague-Dawley , Animals , Humans , Male , Mice , Rats , Cell Proliferation , Cells, Cultured , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/genetics , Hypoxia/complications , Hypoxia/metabolism , Methylation , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , PPAR gamma/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Vascular Remodeling
10.
BMJ Open ; 14(4): e082957, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580360

ABSTRACT

INTRODUCTION: Cardiometabolic disease (CMD) is the leading cause of mortality in China. A healthy diet plays an essential role in the occurrence and development of CMD. Although the Chinese heart-healthy diet is the first diet with cardiovascular benefits, a healthy dietary pattern that fits Chinese food culture that can effectively reduce the risk of CMD has not been found. METHODS/DESIGN: The study is a single-centre, open-label, randomised controlled trial aimed at evaluating the effect of the Reducing Cardiometabolic Diseases Risk (RCMDR) dietary pattern in reducing the risk of CMDs in people with dyslipidaemia and providing a reference basis for constructing a dietary pattern suitable for the prevention of CMDs in the Chinese population. Participants are men and women aged 35-45 years with dyslipidaemia in Tianjin. The target sample size is 100. After the run-in period, the participants will be randomised to the RCMDR dietary pattern intervention group or the general health education control group with a 1:1 ratio. The intervention phases will last 12 weeks, with a dietary intervention of 5 working days per week for participants in the intervention group. The primary outcome variable is the cardiometabolic risk score. The secondary outcome variables are blood lipid, blood pressure, blood glucose, body composition indices, insulin resistance and 10-year risk of cardiovascular diseases. ETHICS AND DISSEMINATION: The study complies with the Measures for Ethical Review of Life Sciences and Medical Research Involving Human Beings and the Declaration of Helsinki. Signed informed consent will be obtained from all participants. The study has been approved by the Medical Ethics Committee of the Second Hospital of Tianjin Medical University (approval number: KY2023020). The results from the study will be disseminated through publications in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: Chinese Clinical Trial Registry (ChiCTR2300072472).


Subject(s)
Cardiovascular Diseases , Dyslipidemias , Male , Humans , Female , Dietary Patterns , Blood Glucose , Risk Factors , Cardiovascular Diseases/prevention & control , Randomized Controlled Trials as Topic
11.
Biomater Sci ; 12(12): 3154-3162, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38687170

ABSTRACT

The effectiveness of photodynamic therapy (PDT) has been greatly restricted by the hypoxic tumor microenvironment and the susceptible resistance of monotherapy. Although nanodrugs based on transition metal complexes capable of integrating PDT with photoactivated chemotherapy (PACT) have garnered tremendous attention as promising candidates for overcoming the above limitations, the therapeutic efficacy of these nanodrugs is still hampered by inadequate loading of active pharmaceutical ingredients (APIs) and the inherent ability of cancer cells to repair damaged DNA. Herein, we developed a photoactivated full-API nanodrug, Ru-T FAND, by one-step self-assembly of RuDPB and TH287. By virtue of its 100 wt% API content and favorable stability in water, the Ru-T FAND exhibited improved cellular uptake behavior and intracellular 1O2 generation. Attractively, the Ru-T FAND with triple anti-cancer modalities can photogenerate 1O2, photo-release DPB ligand and inhibit the repair of DNA damage, ultimately enhancing its phototherapeutic effect on cancer cells. Importantly, the uncaged DPB ligand from RuDPB emits red fluorescence, enabling real-time monitoring of the drug's absorption, distribution and efficacy. Collectively, the presented photoactivated Ru-T FANDs with multiple anti-cancer mechanisms will expand new horizons for the development of safe, efficient and synergistic tumor phototherapy strategies.


Subject(s)
Antineoplastic Agents , Coordination Complexes , DNA Damage , Photochemotherapy , Humans , DNA Damage/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , Transition Elements/chemistry , Transition Elements/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair Enzymes/metabolism
12.
iScience ; 27(5): 109656, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38650984

ABSTRACT

One-carbon (C1) catalysis refers to the conversion of compounds with a single carbon atom, especially carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4), into clean fuels and valuable chemicals via catalytic strategy is crucial for sustainable and green development. Among various catalytic strategies, thermal-driven process seems to be one of the most promising pathways for C1 catalysis due to the high efficiency and practical application prospect. Notably, the rational design of thermal-driven C1 catalysts plays a vital role in boosting the targeted products synthesis of C1 catalysis, which relies heavily on the choice of ideal active site support, catalyst fabrication precursor, and catalytic reaction field. As a novel crystalline porous material, metal-organic frameworks (MOFs) has made significant progress in the design and synthesis of various functional nanomaterials. However, the application of MOFs in C1 catalysis faces numerous challenges, such as thermal stability, mechanical strength, yield of MOFs, and so on. To overcome these limitations and harness the advantages of MOFs in thermal-driven C1 catalysis, researchers have developed various catalyst/carrier preparation strategies. In this review, we provide a concise overview of the recent advancements in the conversion of CO, CO2, and CH4 into clean fuels and valuable chemicals via thermal-catalytic strategy using MOFs-based catalysts. Furthermore, we discuss the main challenges and opportunities associated with MOFs-based catalysts for thermal-driven C1 catalysis in the future.

13.
J Alzheimers Dis ; 99(2): 657-665, 2024.
Article in English | MEDLINE | ID: mdl-38669536

ABSTRACT

Background: Numerous studies have investigated the correlation between malondialdehyde (MDA) and cognitive decline. However, limited research has explored the interplay between superoxide dismutase (SOD), C-reactive protein (CRP), and MDA. Objective: This study aims to scrutinize the association between MDA and cognitive function in older adults, while also elucidating the roles of SOD and CRP within this relationship. Methods: Utilizing data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) spanning 2008-2009, 2011-2012, and 2014, this study included 2,696 eligible subjects. Cognitive function was evaluated using the Chinese version of the Mini-Mental State Examination (MMSE). Linear mixed-effects models were employed to examine the links between MDA, SOD, CRP, and their interactions with cognitive function. Results: Elevated serum levels of MDA and CRP, as well as decreased serum SOD levels, were related to decreased cognitive function (ß= -0.220 and -0.346, 95% CI: -0.399, -0.041 and -0.526, -0.167 for MDA and CRP; ß= 0.384, 95% CI: 0.204, 0.564 for SOD). Notably, a significant interaction between MDA and SOD was detected (p = 0.001). An increase per standard deviation in serum MDA levels was significantly associated with a 0.347-point lower MMSE score only in participants with normal cognitive function and high SOD levels (ß= -0.347, 95% CI: -0.497, -0.197; p < 0.001). Conclusions: Elevated serum MDA levels in the normal population with high SOD levels suggested diminished cognitive performance. Combining MDA with SOD could be pivotal in identifying older adults at risk of cognitive decline in clinical settings.


Subject(s)
C-Reactive Protein , Cognitive Dysfunction , Malondialdehyde , Superoxide Dismutase , Humans , Male , Female , Cognitive Dysfunction/blood , Malondialdehyde/blood , Longitudinal Studies , Aged , Superoxide Dismutase/blood , Aged, 80 and over , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , China/epidemiology , Longevity/physiology , Mental Status and Dementia Tests
14.
Nutrients ; 16(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398843

ABSTRACT

The associations of dynapenic abdominal obesity and transitions with frailty progression remain unclear among middle-aged and older adults. We included 6937 participants from the China Health and Retirement Longitudinal Study (CHARLS) and 3735 from the English Longitudinal Study of Aging (ELSA). Participants were divided into non-dynapenia and non-abdominal obesity (ND/NAO), abdominal obesity alone (AO), dynapenia alone (D), and dynapenic abdominal obesity (D/AO). Frailty status was assessed by the frailty index (FI), and a linear mixed-effect model was employed to analyze the associations of D, AO, D/AO, and transitions with frailty progression. Participants with AO, D, and D/AO had increased FI progression compared with ND/NAO in both cohorts. D/AO possessed the greatest additional annual FI increase of 0.383 (95% CI: 0.152 to 0.614), followed by D and AO in the CHARLS. Participants with D in the ELSA had the greatest magnitude of accelerated FI progression. Participants who transitioned from ND/NAO to D and from AO to D/AO presented accelerated FI progression in the CHARLS and ELSA. In conclusion, dynapenic abdominal obesity, especially for D/AO and D, presented accelerated frailty progression. Our findings highlighted the essential intervention targets of dynapenia and abdominal obesity for the prevention of frailty progression.


Subject(s)
Frailty , Obesity, Abdominal , Middle Aged , Humans , Aged , Obesity, Abdominal/complications , Obesity, Abdominal/epidemiology , Longitudinal Studies , Frailty/epidemiology , Frailty/complications , Waist Circumference , Obesity/complications , Obesity/epidemiology , Hand Strength
15.
Circ Res ; 134(4): 393-410, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38275112

ABSTRACT

BACKGROUND: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3ß signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Proteasome Endopeptidase Complex , Mice , Rats , Animals , Proteasome Endopeptidase Complex/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , Mice, Transgenic , Peptides/metabolism , Mammals
17.
Rev. psicol. deport ; 32(1): 21-30, Abr 11, 2023. graf, tab, ilus
Article in English | IBECS | ID: ibc-218884

ABSTRACT

Objective: As the basketball level rises, the paradox that the theoretical research of psychological tactics lags behind practice becomes more pronounced. This study is undertaken to enhance the pupils' psychological tactics training and scientific level. This study's primary purpose is to examine the effect of long-term training and competition on basketball players' propensity for critical thinking. Methods: The author blends pertinent critical thinking theories from Marxist legal theory with psychological and tactical elements. Using literature, expert interviews, surveys, and quantitative statistics, the importance of critical thinking in the psychological and tactical application process is explored from the standpoint of information gathering, processing, and decision selection and application. Using SPSS17.0, the studied data and pertinent data were obtained. Results: Based on the CUBA Chinese University Basketball Association's test of the critical thinking tendency, it can be determined that basketball players have developed some elements of the critical thinking tendency after long-term training and competition. Conclusion: In the context of modern basketball's evolution, the cognitive ability of decision-makers has a significant impact on decision-making. To attain scientific and rational decision-making in the current competitive climate, decision-makers must possess high decision-making thinking skills. Basketball players have a solid training foundation in critical thinking.(AU)


Subject(s)
Humans , Male , Female , Philosophy , Communism , Students , Basketball , Thinking , Psychology, Sports , Sports , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL