Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 359
Filter
1.
ACS Appl Mater Interfaces ; 16(37): 49474-49483, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39231248

ABSTRACT

In this paper, we present the design and evaluation of an intelligent MEMS sensor employing the oxidized medium-entropy alloy (O-MEA) of FeCoNi as the gas-sensing material. Due to the specific catalytic exothermic reaction of the O-MEA on H2/CO, the sensor shows great selectivity for H2 and CO at 150 °C of the integrated microheater in the MEMS device, with the theoretical detection limit of 0.3 ppm for H2 and 0.29 ppm for CO. The MEMS heater, capable of instantaneous temperature changes in pulse operation mode, offers a novel approach for thermal modulation of the sensor, which is crucial for the adsorption and reaction of H2/CO molecules on the sensing layer surface. Consequently, we investigate the gas-sensing capabilities of the sensor under pulse heating modes (PHMs) of the MEMS heater and then propose the gas-sensing mechanism. The results indicate that PHMs significantly not only reduce the operating temperature and power consumption but also enhance the sensor's functionality by providing multivariable response signals, paving the way for intelligent gas detection. Based on the high selectivity to H2 and CO, transforming the transient sensing curves into two-dimensional images via Gramian Angular Field (GAF) model and subsequent modeling using a convolutional neural network (CNN) algorithm, we have realized efficient and intelligent recognition of H2 and CO. This work provides insight for the development of low-power, high-performance MEMS gas sensors and further intelligence of individual MEMS sensors.

2.
Langmuir ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287408

ABSTRACT

Slippery liquid-infused porous surfaces (SLIPS) have promising applications in chip laboratories, nanofriction power generation, and microfluidics due to their excellent properties such as good hydrophobicity and low adhesion. However, the self-driven stability of conventionally lubricated surfaces is not high, and the velocity of liquid droplets is difficult to regulate. This greatly limits the potential applications of SLIPS. A strategy is offered to prepare microporous structures of SLIPS directly on a stainless-steel substrate using femtosecond laser processing technology as the main means to realize exhibiting smoothness to liquids. At the same time, the principle of bionics is utilized, the porous structure of SLIPS is combined with the groove structure of rice leaves, or porous structures are combined with the wedge structure of shorebird beak to prepare the three-dimensional structure of SLIPS. Droplets exhibit significant individual anisotropy on three-dimensional (3D) SLIPS of leaf-like groove stripe structure in rice, enabling the precise control of droplet motion direction. When droplets are transported in wedge-shaped SLIPS with an asymmetric structure, the wedge edge can limit the direction of droplet motion while squeezing the droplet to generate Laplace pressure gradient, which achieves continuous self-driven transport of droplets. In addition, based on the above two processing strategies, an information transfer device is designed: the splicing of the self-driven transport surface with anisotropic topological channels enables the differential drive for liquid transport, which provides the conditions for the information transfer of the droplets. This strategy not only is simple and efficient but also provides new ideas for the effective development of multifunctional SLIPS as well as lab-on-a-chip and microfluidic domains.

3.
Nanotechnology ; 35(49)2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39137800

ABSTRACT

Line edge roughness (LER) has been an important issue in the nanofabrication research, especially in integrated circuits. Despite numerous research studies has made efforts on achieving smaller LER value, a strategy to achieve sub-nanometer level LER still remains challenging due to inability to deposit energy with a profile of sub-nanometer LER. In this work, we introduce a strategy to fabricate structures with sub-nanometer LER, specifically, we use scanning helium ion beam to expose hydrogen silsesquioxane (HSQ) resist on thin SiNx membrane (∼20 nm) and present the 0.16 nm spatial imaging resolution based on this suspended membrane geometric construction, which is characterized by scanning transmission electron microscope (STEM). The suspended membrane serves as an energy filter of helium ion beam and due to the elimination of backscattering induced secondary electrons, we can systematically study the factors that influences the LER of the fabricated nanostructures. Furthermore, we explore the parameters including step size, designed exposure linewidth (DEL), delivered dosage and resist thickness and choosing the high contrast developer, the process window allows to fabricate lines with 0.2 nm LER is determined. AFM measurement and simulation work further reveal that at specific beam step size and DEL, the nanostructures with minimum LER can only be fabricated at specific resist thickness and dosage.

4.
Anal Methods ; 16(35): 5999-6010, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39171437

ABSTRACT

Eliminating errors in next-generation sequencing has proven to be challenging. Here we present a novel strategy for DNA sequencing, called correctable two-color fluorogenic DNA decoding sequencing, which can significantly improve sequencing accuracy and throughput by employing a dual-nucleotide addition combined with fluorogenic sequencing-by-synthesis (SBS) chemistry. This sequencing method involves introducing a mixture of natural nucleotide X, labeled unblocked nucleotide X', 3' blocked nucleotide Y*, and labeled 3' blocked nucleotide Y* into each reaction cycle. By cyclically interrogating a template twice with different nucleotide combinations, two sets of base-encoding are sequentially obtained, enabling accurate deduction of base sequence. We demonstrate the remarkable efficacy of this approach in detecting and correcting sequencing errors, achieving a theoretical error rate of 0.0005%, which is twice as accurate as Sanger sequencing. Furthermore, we show the capability to detect known mutation sites using information from only a single sequencing run. The correctable two-color fluorogenic DNA decoding sequencing approach should enable accurate identification of extremely rare genomic variations in diverse applications in biology and medicine.


Subject(s)
High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Fluorescent Dyes/chemistry , DNA/genetics , DNA/chemistry , Humans , Mutation
5.
Physiol Plant ; 176(4): e14471, 2024.
Article in English | MEDLINE | ID: mdl-39129657

ABSTRACT

UV RESISTANCE LOCUS 8 (UVR8) has been identified in Arabidopsis thaliana as the receptor mediating responses to UV-B radiation. However, UVR8-mediated UV-B signaling pathways in rice, which possesses two proteins (UVR8a and UVR8b) with high identities to AtUVR8, remain largely unknown. Here, UVR8a/b were found to be predominantly expressed in rice leaves and leaf sheaths, while the levels of UVR8b transcript and UVR8b protein were both higher than those of UVR8a. Compared to wild-type (WT) plants, uvr8b and uvr8a uvr8b rice mutants exposed to UV-B showed reduced UV-B-induced growth inhibition and upregulation of CHS and HY5 transcripts alongside UV-B acclimation. However, uvr8a mutant was similar to WT plants and exhibited changes comparable with WT. Overexpressing OsUVR8a/b enhanced UV-B-induced growth inhibition and acclimation to UV-B. UV-B was able to enhance the interaction between E3 ubiquitin ligase OsCOP1 and OsUVR8a/b, whereas the interaction of the homologous protein of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS2 (AtRUP2) in rice with OsUVR8a/b was independent of UV-B. Additionally, OsUVR8a/b proteins were also found in the nucleus and cytoplasm even in the absence of UV-B. The abundance of OsUVR8 monomer showed an invisible change in the leaves of rice seedlings transferred from white light to that supplemented with UV-B, even though UV-B was able to weaken the interactions between OsUVR8a and OsUVR8b homo and heterodimers. Therefore, both OsUVR8a and OsUVR8b, which have different localization and response patterns compared with AtUVR8, function in the response of rice to UV-B radiation, whereas OsUVR8b plays a predominant role in this process.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Ultraviolet Rays , Oryza/genetics , Oryza/radiation effects , Oryza/metabolism , Oryza/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Plant Leaves/radiation effects , Plant Leaves/metabolism , Plant Leaves/genetics , Mutation
6.
ACS Sens ; 9(8): 3979-3985, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39093667

ABSTRACT

Metal oxide gas sensors (MOGS), crucial components in monitoring air quality and detecting hazardous gases, are well known for their poisoning effects when exposed to certain gas molecules, such as hydrogen sulfide. Surprisingly, our research reveals that high-temperature H2S treatment leads to an enhancement effect rather than response decay. This study investigates the time-decaying response enhancement, being attributed to the formation of metal sulfide and metal sulfate on the metal oxide's surface, enhancing the electronic sensitization. Such an enhancement effect is demonstrated for various gases, including CO, CH3CH2OH, CH4, HCHO, and NH3. Additionally, the impacts of H2S treatment on the response and recovery time are also observed. Surface compositional analysis are conducted with X-ray photoelectron spectroscopy. A proposed mechanism for the enhancement effect is elaborated, highlighting the role of electronic sensitization and the sulfide-sulfate component. This research offers valuable insights into the potential applications of metal oxide sensors in sulfide-presented harsh environments in gas sensing, encouraging future exploration of optimized sensor materials, operation temperature, and the development of hydrogen sulfide poisoning-resistant and higher sensitivity MOGS.


Subject(s)
Gases , Hydrogen Sulfide , Oxides , Hydrogen Sulfide/analysis , Oxides/chemistry , Gases/chemistry , Gases/analysis , Hot Temperature , Metals/chemistry
7.
Oncol Rep ; 52(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39092570

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the western blotting data shown in Fig. 4B and C on p. 1952, and the Transwell invasion assay data in Fig. 2F and 4I, had already appeared in previously published articles written by different authors at different research institutes (a number of which have been retracted). Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 42: 1946­1956, 2019; DOI: 10.3892/or.2019.7302].

8.
J Pharm Biomed Anal ; 249: 116397, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39111245

ABSTRACT

We proposed a single-color fluorogenic DNA decoding sequencing method designed to improve sequencing accuracy, increase read length and throughput, as well as decrease scanning time. This method involves the incorporation of a mixture of four types of 3'-O-modified nucleotide reversible terminators into each reaction. Among them, two nucleotides are labeled with the same fluorophore, while the remaining two are unlabeled. Only one nucleotide can be extended in each reaction, and an encoding that partially defines base composition can be obtained. Through cyclic interrogation of a template twice with different nucleotide combinations, two sets of encodings are sequentially obtained, enabling the determination of the sequence. We demonstrate the feasibility of this method using established sequencing chemistry, achieving a cycle efficiency of approximately 99.5 %. Notably, this strategy exhibits remarkable efficacy in the detection and correction of sequencing errors, achieving a theoretical error rate of 0.00016 % at a sequencing depth of ×2, which is lower than Sanger sequencing. This method is theoretically compatible with the existing sequencing-by-synthesis (SBS) platforms, and the instrument is simpler, which may facilitate further reductions in sequencing costs, thereby broadening its applications in biology and medicine. Moreover, we demonstrate the capability to detect known mutation sites using information from only a single sequencing run. We validate this approach by accurately identifying a mutation site in the human mitochondrial DNA.


Subject(s)
Fluorescent Dyes , Mutation , Fluorescent Dyes/chemistry , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , DNA/genetics , Genotype , Genotyping Techniques/methods , DNA Mutational Analysis/methods , DNA, Mitochondrial/genetics
9.
Prog Biophys Mol Biol ; 192: 11-18, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111717

ABSTRACT

Sugar serves as the primary energy source for mammals, with glucose metabolism facilitating energy acquisition in human cells. The proper functioning of intracellular glucose metabolism is essential for the maintenance of orderly and healthy physiological activities. Tumor cells, characterized by uncontrolled growth, exhibit dysregulated proliferation and apoptosis processes, leading to abnormal alterations in glucose metabolism. Specifically, tumor cells exhibit a shift towards aerobic glycolysis, resulting in the production of lactic acid that can be utilized as a metabolic intermediate for sustained tumor cell growth. This article provides a comprehensive overview of the enzymes involved in glucose metabolism and the alterations in gene expression that occur during tumor progression. It also examines the current research on targeting abnormal glucose metabolism processes for tumor treatment and discusses potential future directions for utilizing glucose metabolism as a therapeutic target.


Subject(s)
Disease Progression , Glucose , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Glucose/metabolism , Animals
10.
Front Plant Sci ; 15: 1431097, 2024.
Article in English | MEDLINE | ID: mdl-38947949

ABSTRACT

Tender bamboo shoots undergo rapid senescence that influences their quality and commercial value after harvest. In this study, the tender sweet bamboo shoots ('Wensun') were packed by a passive modified atmosphere packaging (PMAP) to inhibit the senescence process, taking polyethylene package as control. The increase in CO2 and the decrease in O2 gas concentrations in the headspace atmosphere of the packages were remarkably modified by PMAP treatments. The modified gas atmosphere packaging inhibited the changes in firmness, as well as the content of cellulose, total pectin, and lignin in the cell walls of bamboo shoots. The enzymatic activities of cellulase, pectinase, and polygalacturonase that act on cell wall polysaccharides, and phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, peroxidase, and laccase regulating the lignin biosynthesis were modified by PMAP treatment different from control during storage. The expression levels of the lignin biosynthesis genes PePAL3/4, PeCAD, Pe4CL5, PeC4H, PeCCOAOMT, PeCOMT, cellulose synthase PeCESA1, and related transcription factors PeSND2, PeKNAT7, PeMYB20, PeMYB63, and PeMYB85 were clearly regulated. These results suggest that PMAP efficiently retards the changes in lignin and cell wall polysaccharides, thus delaying the senescence of tender sweet bamboo shoots during storage.

11.
Theranostics ; 14(9): 3653-3673, 2024.
Article in English | MEDLINE | ID: mdl-38948066

ABSTRACT

Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.


Subject(s)
Basolateral Nuclear Complex , Disease Models, Animal , Hippo Signaling Pathway , Mitochondria , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , Mice , Mitochondria/metabolism , YAP-Signaling Proteins/metabolism , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Stress, Psychological/complications , Stress, Psychological/metabolism , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Depression/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Mice, Transgenic
12.
Nat Commun ; 15(1): 5291, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987547

ABSTRACT

Resistance to immune checkpoint therapy (ICT) presents a growing clinical challenge. The tumor microenvironment (TME) and its components, namely tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs), play a pivotal role in ICT resistance; however, the underlying mechanisms remain under investigation. In this study, we identify expression of TNF-Stimulated Factor 6 (TSG-6) in ICT-resistant pancreatic tumors, compared to ICT-sensitive melanoma tumors, both in mouse and human. TSG-6 is expressed by CAFs within the TME, where suppressive macrophages expressing Arg1, Mafb, and Mrc1, along with TSG-6 ligand Cd44, predominate. Furthermore, TSG-6 expressing CAFs co-localize with the CD44 expressing macrophages in the TME. TSG-6 inhibition in combination with ICT improves therapy response and survival in pancreatic tumor-bearing mice by reducing macrophages expressing immunosuppressive phenotypes and increasing CD8 T cells. Overall, our findings propose TSG-6 as a therapeutic target to enhance ICT response in non-responsive tumors.


Subject(s)
Cancer-Associated Fibroblasts , Cell Adhesion Molecules , Immune Checkpoint Inhibitors , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Humans , Tumor Microenvironment/immunology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Myeloid Cells/metabolism , Myeloid Cells/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Mice, Inbred C57BL , Female , Drug Resistance, Neoplasm , Macrophages/immunology , Macrophages/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism
13.
Brain Res ; 1843: 149116, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38977238

ABSTRACT

BACKGROUND: Diallyl trisulfide (DATS) has a direct antioxidant capacity and emerges as a promising neuroprotective agent. This study was designed to investigate the role of DATS in traumatic brain injury (TBI). METHODS: TBI mouse models were established using the controlled cortical impact, followed by DATS administration. The effects of DATS on neurological deficit, brain damage, inflammation and phosphoglycerate kinase 1 (PGK1) expression were detected using mNSS test, histological analysis, TUNEL assay, enzyme-linked immunosorbent assay and immunofluorescence. PC12 cells were subjected to H2O2-induced oxidative injury after pre-treatment with DATS, followed by cell counting kit-8 assay, flow cytometry and ROS production detection. Apoptosis-related proteins and the PGK1/nuclear factor erythroid-2 related factor 2 (Nrf2) pathway were examined using Western blot. RESULTS: DATS ameliorated the cerebral cortex damage, neurological dysfunction and apoptosis, as well as decreased PGK1 expression and expressions of pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α) in mice after TBI. DATS also enhanced viability, blocked apoptosis and inhibited ROS production in H2O2-induced PC12 cells. DATS downregulated Cleaved-Caspase3, Bax and PGK1 levels, and upregulated Bcl-2 and Nrf2 levels in TBI mouse models and the injured cells. CONCLUSION: DATS regulates PGK1/Nrf2 expression and inflammation to alleviate neurological damage in mice after TBI.


Subject(s)
Allyl Compounds , Apoptosis , Brain Injuries, Traumatic , NF-E2-Related Factor 2 , Phosphoglycerate Kinase , Sulfides , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Sulfides/pharmacology , Mice , NF-E2-Related Factor 2/metabolism , Phosphoglycerate Kinase/metabolism , Allyl Compounds/pharmacology , PC12 Cells , Male , Apoptosis/drug effects , Inflammation/metabolism , Inflammation/drug therapy , Neuroprotective Agents/pharmacology , Rats , Oxidative Stress/drug effects , Mice, Inbred C57BL , Disease Models, Animal , Antioxidants/pharmacology
14.
J Ethnopharmacol ; 335: 118600, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39053714

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Herb-induced liver injury (HILI) represents an exacerbated inflammatory response, with Psoraleae fructus (PF) and its preparations recently associated with hepatotoxicity. Licorice, historically recognized as a detoxifying herbal remedy, is considered to possess hepatoprotective properties. Our previous research identified bavachin, bakuchiol, and psoralidin (PSO) as potential toxic constituents in PF, while licochalcone B (LCB) and echinatin were identified as bioactive components in licorice. However, evidence regarding the interactions of active compounds in herbs and their underlying mechanisms remains limited. AIM OF THE STUDY: The objective of this study is to assess the potential mechanisms through which LCB modulates immunological and anti-inflammatory responses to treat PSO-induced liver injury by using human hepatocyte cells (L02) and LPS-primed mice. METHODS: The ameliorative effects of LCB and echinatin on bavachin, bakuchiol, and PSO-induced liver injury were demonstrated in L02 cells. Subsequently, the efficacy of LCB on PSO-induced idiosyncratic liver injury was further validated in C57BL/6 mice under moderate inflammatory stress induced by LPS priming. The mechanisms were preliminarily explored with an integrated strategy of molecular docking, RT-PCR verification, and untargeted metabolomics. RESULTS: The study shows that LCB significantly reduced cell injury induced by the three chemicals in PF and provided substantial protection against PSO-induced hepatic damage, as indicated by the levels of ALT, AST, and LDH. LCB normalized liver function and remarkedly alleviated hepatic lesions and inflammation caused by PSO in mice under moderate inflammatory stress. The mRNA profiles of both L02 cells and mice liver tissue revealed that LCB mitigated PSO-induced hepatotoxicity by regulating the gene expression of pro-inflammatory cytokines IL1B and TNF, as well as immunoinflammatory genes PIK3CA, AKT1, NFKB1, and NLRP3. Furthermore, untargeted metabolomics of liver tissue indicated that LCB could reverse the abnormal expression of 11 discriminatory metabolites, with the interrelationship between differential metabolites and target genes primarily clustering in glycerophospholipid metabolism, arachidonic acid metabolism, and phosphatidylinositol signaling system. CONCLUSION: LCB demonstrated a superior anti-inflammatory and immunomodulatory effect on PSO-induced hepatotoxicity by modulating the inflammatory response and metabolic signaling system. Key interactive targets included phosphatidylcholine, phosphatidic acid, and subunit isoforms of PI3K.


Subject(s)
Anti-Inflammatory Agents , Benzofurans , Chalcones , Chemical and Drug Induced Liver Injury , Mice, Inbred C57BL , Phenols , Animals , Chalcones/pharmacology , Anti-Inflammatory Agents/pharmacology , Humans , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Male , Benzofurans/pharmacology , Phenols/pharmacology , Mice , Cell Line , Coumarins/pharmacology , Immunologic Factors/pharmacology , Molecular Docking Simulation , Glycyrrhiza/chemistry , Lipopolysaccharides/toxicity , Liver/drug effects , Liver/pathology , Liver/metabolism , Hepatocytes/drug effects , Cytokines/metabolism , Flavonoids/pharmacology
15.
Medicina (Kaunas) ; 60(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38929577

ABSTRACT

Background: Research on the impact of reduced time to emergent surgery in trauma patients has yielded inconsistent results. Therefore, this study investigated the relationship between waiting emergent surgery time (WEST) and outcomes in trauma patients. Methods: This retrospective, multicenter study used data from the Tzu Chi Hospital trauma database. The primary clinical outcomes were in-hospital mortality, intensive care unit (ICU) admission, and prolonged hospital length of stay (LOS) of ≥30 days. Results: A total of 15,164 patients were analyzed. The median WEST was 444 min, with an interquartile range (IQR) of 248-848 min for all patients. Patients who died in the hospital had a shorter median WEST than did those who survived (240 vs. 446 min, p < 0.001). Among the trauma patients with a WEST of <2 h, the median time was 79 min (IQR = 50-100 min). No significant difference in WEST was observed between the survival and mortality groups for patients with a WEST of <120 min (median WEST: 85 vs. 78 min, p < 0.001). Multivariable logistic regression analysis revealed that WEST was not associated with an increased risk of in-hospital mortality (adjusted odds ratio [aOR] = 1.05, 95% confidence interval [CI] = 0.17-6.35 for 30 min ≤ WEST < 60 min; aOR = 1.12, 95% CI = 0.22-5.70 for 60 min ≤ WEST < 90 min; and aOR = 0.60, 95% CI = 0.13-2.74 for WEST ≥ 90 min). Conclusions: Our findings do not support the "golden hour" concept because no association was identified between the time to definitive care and in-hospital mortality, ICU admission, and prolonged hospital stay of ≥30 days.


Subject(s)
Hospital Mortality , Length of Stay , Wounds and Injuries , Humans , Female , Male , Retrospective Studies , Middle Aged , Adult , Length of Stay/statistics & numerical data , Wounds and Injuries/mortality , Wounds and Injuries/surgery , Aged , Intensive Care Units/statistics & numerical data , Time Factors , Time-to-Treatment/statistics & numerical data , Logistic Models
17.
Langmuir ; 40(22): 11470-11480, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768447

ABSTRACT

The inclusion of sacrificial hydrogen bonds is crucial for advancing high-performance rubber materials. However, the molecular mechanisms governing the impact of these bonds on material properties remain unclear, hindering progress in advanced rubber material research. This study employed all-atom molecular dynamics simulations to thoroughly investigate how hydrogen bonds affect the structure, dynamics, mechanics, and linear viscoelasticity of rubber materials. As the modified repeating unit ratio (ß) increased, both interchain and intrachain hydrogen bond content rose, with interchain bonds playing a predominant role. This physical cross-linking network formed through interchain hydrogen bonds restricts molecular chain movement and relaxation and raises the glass transition temperature of rubber. Within a certain content of hydrogen bonds, the mechanical strength increases with increasing ß. However, further increasing ß leads to a subsequent decrease in the mechanical performance. Optimal mechanical properties were observed at ß = 6%. On the other hand, a higher ß value yields an elevated stress relaxation modulus and an extended stress relaxation plateau, signifying a more complex hydrogen-bond cross-linking network. Additionally, higher ß increases the storage modulus, loss modulus, and complex viscosity while reducing the loss factor. In summary, this study successfully established the relationship between the structure and properties of natural rubber containing hydrogen bonds, providing a scientific foundation for the design of high-performance rubber materials.

18.
Shock ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38813929

ABSTRACT

BACKGROUND: Early prediction of sepsis onset is crucial for reducing mortality and the overall cost burden of sepsis treatment. Currently, few effective and accurate prediction tools are available for sepsis. Hence, in this study, we developed an effective sepsis clinical decision support system (S-CDSS) to assist emergency physicians to predict sepsis. METHODS: This study included patients who had visited the emergency department (ED) of Taipei Tzu Chi Hospital, Taiwan, between January 1, 2020, and June 31, 2022. The patients were divided into a derivation cohort (n = 70,758) and a validation cohort (n = 27,545). The derivation cohort was subjected to sixfold stratified cross-validation, reserving 20% of the data (n = 11,793) for model testing. The primary study outcome was a sepsis prediction (International Classification of Diseases, Tenth Revision, Clinical Modification) before discharge from the ED. The S-CDSS incorporated the LightGBM algorithm to ensure timely and accurate prediction of sepsis. The validation cohort was subjected to multivariate logistic regression to identify the associations of S-CDSS-based high- and medium-risk alerts with clinical outcomes in the overall patient cohort. For each clinical outcome in high- and medium-risk patients, we calculated the sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and accuracy of S-CDSS-based predictions. RESULTS: The S-CDSS was integrated into our hospital information system. The system featured three risk warning labels (red, yellow, and white, indicating high, medium, and low risks, respectively) to alert emergency physicians. The sensitivity and specificity of the S-CDSS in the derivation cohort were 86.9% and 92.5%, respectively. In the validation cohort, high- and medium-risk alerts were significantly associated with all clinical outcomes, exhibiting high prediction specificity for intubation, general ward admission, intensive care unit admission, ED mortality, and in-hospital mortality (93.29%, 97.32%, 94.03%, 93.04%, and 93.97%, respectively). CONCLUSION: Our findings suggest that the S-CDSS can effectively identify patients with suspected sepsis in the ED. Furthermore, S-CDSS-based predictions appear to be strongly associated with clinical outcomes in patients with sepsis.

19.
Medicina (Kaunas) ; 60(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674293

ABSTRACT

Background and Objectives: The Taiwan Triage and Acuity Scale (TTAS) is reliable for triaging patients in emergency departments in Taiwan; however, most triage decisions are still based on chief complaints. The reverse-shock index (SI) multiplied by the simplified motor score (rSI-sMS) is a more comprehensive approach to triage that combines the SI and a modified consciousness assessment. We investigated the combination of the TTAS and rSI-sMS for triage compared with either parameter alone as well as the SI and modified SI. Materials and Methods: We analyzed 13,144 patients with trauma from the Taipei Tzu Chi Trauma Database. We investigated the prioritization performance of the TTAS, rSI-sMS, and their combination. A subgroup analysis was performed to evaluate the trends in all clinical outcomes for different rSI-sMS values. The sensitivity and specificity of rSI-sMS were investigated at a cutoff value of 4 (based on previous study and the highest score of the Youden Index) in predicting injury severity clinical outcomes under the TTAS system were also investigated. Results: Compared with patients in triage level III, those in triage levels I and II had higher odds ratios for major injury (as indicated by revised trauma score < 7 and injury severity score [ISS] ≥ 16), intensive care unit (ICU) admission, prolonged ICU stay (≥14 days), prolonged hospital stay (≥30 days), and mortality. In all three triage levels, the rSI-sMS < 4 group had severe injury and worse outcomes than the rSI-sMS ≥ 4 group. The TTAS and rSI-sMS had higher area under the receiver operating characteristic curves (AUROCs) for mortality, ICU admission, prolonged ICU stay, and prolonged hospital stay than the SI and modified SI. The combination of the TTAS and rSI-sMS had the highest AUROC for all clinical outcomes. The prediction performance of rSI-sMS < 4 for major injury (ISS ≥ 16) exhibited 81.49% specificity in triage levels I and II and 87.6% specificity in triage level III. The specificity for mortality was 79.2% in triage levels I and II and 87.4% in triage level III. Conclusions: The combination of rSI-sMS and the TTAS yielded superior prioritization performance to TTAS alone. The integration of rSI-sMS and TTAS effectively enhances the efficiency and accuracy of identifying trauma patients at a high risk of mortality.


Subject(s)
Triage , Wounds and Injuries , Humans , Triage/methods , Triage/standards , Male , Female , Taiwan/epidemiology , Middle Aged , Adult , Wounds and Injuries/mortality , Aged , Emergency Service, Hospital/organization & administration , Emergency Service, Hospital/statistics & numerical data , Injury Severity Score , Sensitivity and Specificity , Trauma Severity Indices , Shock/mortality , Shock/diagnosis , Length of Stay/statistics & numerical data
20.
Macromol Rapid Commun ; 45(12): e2300715, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38539063

ABSTRACT

The raw materials of Poly(ethylene terephthalate) (PET) are derived from petroleum-based resources, which are no sustainable. Therefore, previous researchers introduced biomass-derived 2,5-tetrahydrofurfuryl dimethanol (THFDM) into PET. However, its heat resistance has decreased compared to PET. In this paper, a novel bio-based copolyester, poly(ethylene glycol-co-2,5-tetrahydrofuran dimethanol-co-isosorbide terephthalate) (PEIFT), is prepared by introducing biomass-derived isosorbide (ISB) and THFDM into the PET chains through melting copolymerization process. With the introduction of ISB content, copolyesters' hydrophilicity and rigidity improve. Compared to PET, glass transition temperature (Tg) increases by over 5 °C. In addition, the toughness and spinning performance of PEIFT have also been improved as a result of the addition of THFDM components. The hydrophobicity of PEIFTs electrospinning is greatly improved, with a contact angle exceeding 135°. Finally, due to the good hydrophobicity of PEIFTs nanofibers, they have potential application value in the manufacture of hydrophobic nanofiber and filter films. Given its biomass source and excellent performance, they make it easier to replace materials derived from petroleum.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Nanofibers , Polyesters , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis , Isosorbide/chemistry , Biomass , Polyethylene Terephthalates/chemistry , Furans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL