Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Ann Med ; 56(1): 2397569, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39221756

ABSTRACT

OBJECTIVES: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high incidence and mortality rates worldwide. This study aimed to investigate the correlation between LINC-PINT polymorphisms and ESCC risk in the Hainan Han population. METHODS: A total of 391 patients with ESCC and 452 healthy controls were enrolled to evaluate the effect of LINC-PINT SNPs (single nucleotide polymorphisms) on ESCC susceptibility. Associations were evaluated by calculating odds ratios (OR) and 95% confidence intervals (CIs). Multifactor dimensionality reduction analysis was performed to explore the association between SNP-SNP interactions and ESCC susceptibility. We further determined the correlation between clinical indicators and SNP in patients with ESCC. RESULTS: Our study showed that rs157916 (OR 0.63, p = 0.011) and rs157928 (OR 0.80, p = 0.021) were associated with a decreased risk of ESCC. Stratified analysis indicated that rs157916 could decrease the risk of ESCC in people aged >64 years, in males, and non-drinkers (OR 0.58, p = 0.042; OR 0.58, p = 0.010; OR 0.62, p = 0.025, respectively). Rs16873842 was related to a decreased risk of ESCC in males (OR 0.70, p = 0.015). Rs7801029 was associated with ESCC risk in females (OR 0.39, p = 0.033) and non-drinkers (OR 0.68, p = 0.040). Rs7781295 decreased the ESCC risk in smokers (OR 0.58, p = 0.046) and drinkers (OR 0.58, p = 0.046). In addition, rs157928 played a protective role in ESCC risk in females (OR 0.39, p = 0.033) and non-smokers (OR 0.32, p = 0.006). Additionally, the best predictive model for ESCC was a combination of rs157916, rs16873842, rs7801029, rs7781295, rs28662387, and rs157928. CONCLUSION: Our study revealed that LINC-PINT polymorphisms were associated with ESCC risk.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Aged , Female , Humans , Male , Middle Aged , Case-Control Studies , China/epidemiology , Esophageal Neoplasms/ethnology , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/ethnology , Esophageal Squamous Cell Carcinoma/genetics , Risk Factors , RNA, Long Noncoding/genetics , East Asian People/genetics , Ethnicity/genetics
2.
Talanta ; 281: 126867, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39277939

ABSTRACT

In situ monitoring microRNA (miRNA) expression in vivo holds immense potential for directly visualizing the occurrence and progression of tumors. However, the significant barrier to developing a probe that can overcome the low abundance of miRNAs while providing an output signal with unlimited tissue penetration depth remains formidable. In this study, we developed a DNA machine-based magnetic resonance imaging nanoprobe (MRINP) for amplified detection of miR-21 in vivo. The MRINP was constructed with superparamagnetic Fe3O4 nanoparticles (NPs), paramagnetic Gd-DOTA complexes, and miR-21-activated DNA machines; the DNA machine was composed of hairpin DNAzyme (HD) strands serving as the DNAzyme walker and hairpin substrate (HS) strands serving as the track. Once uptake into tumor cells, the intracellular miR-21 specifically recognized and hybridized with the HD strand, restoring the activity of DNAzyme. Subsequently, the DNAzyme walker autonomously traveled on the surface of MRINP, and each step movement of the DNAzyme walker resulted in the cleavage of its substrate strands and the ensued release of the Gd-DOTA complex-labeled oligonucleotides, turning on the T1 signal of Gd-DOTA complexes for in situ imaging of miR-21 in tumor-bearing mice. This strategy would offer a promising approach for mapping tumor-specific biomarkers in vivo with unlimited penetration depth.

3.
Cell Signal ; 122: 111308, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059756

ABSTRACT

BACKGROUND: The protection of the diabetic kidney by Empagliflozin (EMPA) is attributed to its interaction with the sodium glucose cotransporter 2 located on proximal tubular epithelial cells (PTECs). Estrogen-related receptor α (ESRRA), known for its high expression in PTECs and association with mitochondrial biogenesis, plays a crucial role in this process. This study aimed to explore the impact of ESRRA on mitochondrial mass in diabetic tubular injury and elucidate the mechanism underlying the protective effects of EMPA. METHODS: Mitochondrial changes in PTECs of 16-week-old diabetic mice were assessed using transmission electron microscopy (TEM) and RNA-sequences. In vivo, EMPA administration was carried out in db/db mice for 8 weeks, while in vitro experiments involved modifying ESRRA expression in HK2 cells using pcDNA-ESRRA or EMPA. RESULTS: Evaluation through TEM revealed reduced mitochondrial mass and swollen mitochondria in PTECs, whereas no significant changes were observed under light microscopy. Analysis of RNA-sequences identified 110 downregulated genes, including Esrra, associated with mitochondrial function. Notably, ESRRA overexpression rescued the loss of mitochondrial mass induced by high glucose (HG) in HK2 cells. EMPA treatment ameliorated the ultrastructural alterations and mitigated the downregulation of ESRRA both in db/db mice and HG-treated HK2 cells. CONCLUSION: The diminished expression of ESRRA is implicated in the decline of mitochondrial mass in PTECs during the early stages of diabetes, highlighting it as a key target of EMPA for preventing the progression of diabetic kidney injury.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Mitochondria , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/ultrastructure , Benzhydryl Compounds/pharmacology , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Male , ERRalpha Estrogen-Related Receptor , Humans , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/ultrastructure , Mice, Inbred C57BL , Cell Line , Receptors, Estrogen/metabolism
4.
Front Pharmacol ; 15: 1393874, 2024.
Article in English | MEDLINE | ID: mdl-38855745

ABSTRACT

Introduction: The prevalence of major depressive disorder (MDD) has gradually increased and has attracted widespread attention. The aim of this study was to investigate the effect of a probiotic compound consisting of Bacillus coagulans and Clostridium butyricum, on a mouse depression model. Methods: Mice were subjected to chronic unpredictable mild stress (CUMS) and then treated with the probiotics at different concentrations. And mice received behavior test such as forced swimming test and tail suspension test. After that, all mice were sacrificed and the samples were collected for analysis. Moreover, prefrontal cortex (PFC) gene expression and the gut microbiota among different groups were also analyzed. Results: Probiotics improved depressive-like behavior in CUMS mice, as indicated by decreased immobility time (p < 0.05) in the forced swimming test and tail suspension test. probiotics intervention also increased the level of 5-hydroxytryptamine (5-HT) in the prefrontal cortex and decreased the adrenocorticotropic hormone (ACTH) level in serum. In addition, by comparing the PFC gene expression among different groups, we found that the genes upregulated by probiotics were enriched in the PI3K-Akt signaling pathway in the prefrontal cortex. Moreover, we found that downregulated genes in prefrontal cortex of CUMS group such as Sfrp5 and Angpt2, which were correlated with depression, were reversed by the probiotics. Furthermore, the probiotics altered the structure of the gut microbiota, and reversed the reduction of cob(II)yrinate a,c-diamide biosynthesis I pathway in CUMS group. Several species like Bacteroides caecimuris and Parabacteroides distasoni, whose abundance was significantly decreased in the CUMS group but reversed after the probiotics intervention, showed significantly positive correlation with depression associated genes such as Tbxas1 and Cldn2. Discussion: These findings suggested that CUMS-induced depression-like behavior can be alleviated by the probiotics, possibly through alterations in the PFC gene expression and gut microbiota.

5.
Insights Imaging ; 15(1): 116, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735009

ABSTRACT

OBJECTIVES: To investigate the value of extracellular volume (ECV) derived from portal-venous phase (PVP) in predicting prognosis in locally advanced pancreatic cancer (LAPC) patients receiving intraoperative radiotherapy (IORT) with initial stable disease (SD) and to construct a risk-scoring system based on ECV and clinical-radiological features. MATERIALS AND METHODS: One hundred and three patients with LAPC who received IORT demonstrating SD were enrolled and underwent multiphasic contrast-enhanced CT (CECT) before and after IORT. ECV maps were generated from unenhanced and PVP CT images. Clinical and CT imaging features were analyzed. The independent predictors of progression-free survival (PFS) determined by multivariate Cox regression model were used to construct the risk-scoring system. Time-dependent receiver operating characteristic (ROC) curve analysis and the Kaplan-Meier method were used to evaluate the predictive performance of the scoring system. RESULTS: Multivariable analysis revealed that ECV, rim-enhancement, peripancreatic fat infiltration, and carbohydrate antigen 19-9 (CA19-9) response were significant predictors of PFS (all p < 0.05). Time-dependent ROC of the risk-scoring system showed a satisfactory predictive performance for disease progression with area under the curve (AUC) all above 0.70. High-risk patients (risk score ≥ 2) progress significantly faster than low-risk patients (risk score < 2) (p < 0.001). CONCLUSION: ECV derived from PVP of conventional CECT was an independent predictor for progression in LAPC patients assessed as SD after IORT. The scoring system integrating ECV, radiological features, and CA19-9 response can be used as a practical tool for stratifying prognosis in these patients, assisting clinicians in developing an appropriate treatment approach. CRITICAL RELEVANCE STATEMENT: The scoring system integrating ECV fraction, radiological features, and CA19-9 response can track tumor progression in patients with LAPC receiving IORT, aiding clinicians in choosing individual treatment strategies and improving their prognosis. KEY POINTS: Predicting the progression of LAPC in patients receiving IORT is important. Our ECV-based scoring system can risk stratifying patients with initial SD. Appropriate prognostication can assist clinicians in developing appropriate treatment approaches.

6.
Abdom Radiol (NY) ; 49(6): 1918-1928, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642093

ABSTRACT

PURPOSE: To evaluate the role of the magnetic resonance imaging (MRI) Liver Imaging Reporting and Data System (LI-RADS) version 2018 features and clinical-pathological factors for predicting the prognosis of alpha-fetoprotein (AFP)-negative (≤ 20 ng/ml) hepatocellular carcinoma (HCC) patients, and to compare with other traditional staging systems. METHODS: We retrospectively enrolled 169 patients with AFP-negative HCC who received preoperative MRI and hepatectomy between January 2015 and August 2020 (derivation dataset:validation dataset = 118:51). A prognostic model was constructed using the risk factors identified via Cox regression analysis. Predictive performance and discrimination capability were evaluated and compared with those of two traditional staging systems. RESULTS: Six risk factors, namely the LI-RADS category, blood products in mass, microvascular invasion, tumor size, cirrhosis, and albumin-bilirubin grade, were associated with recurrence-free survival. The prognostic model constructed using these factors achieved C-index of 0.705 and 0.674 in the derivation and validation datasets, respectively. Furthermore, the model performed better in predicting patient prognosis than traditional staging systems. The model effectively stratified patients with AFP-negative HCC into high- and low-risk groups with significantly different outcomes (p < 0.05). CONCLUSION: A prognostic model integrating the LI-RADS category, blood products in mass, microvascular invasion, tumor size, cirrhosis, and albumin-bilirubin grade may serve as a valuable tool for refining risk stratification in patients with AFP-negative HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Magnetic Resonance Imaging , alpha-Fetoproteins , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Retrospective Studies , alpha-Fetoproteins/analysis , Prognosis , Aged , Neoplasm Staging , Adult , Risk Factors , Radiology Information Systems , Hepatectomy , Liver/diagnostic imaging , Liver/pathology
7.
ACS Nano ; 18(11): 7923-7936, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38445625

ABSTRACT

Tumor whole cell, carrying a complete set of tumor-associated antigens and tumor-specific antigens, has shown great potential in the construction of tumor vaccines but is hindered by the complex engineering means and limited efficacy to cause immunity. Herein, we provided a strategy for the self-mineralization of autologous tumor cells with palladium ions in microfluidic droplets, which endowed the engineered cells with both immune and catalytic functions, to establish a bioorthogonally catalytic tumor whole-cell vaccine. This vaccine showed strong inhibition both in the occurrence and recurrence of tumor by invoking the immediate antitumor immunity and building a long-term immunity.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Microfluidics , Immunotherapy , Neoplasms/therapy , Antigens, Neoplasm
8.
Cell Death Dis ; 15(3): 217, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485717

ABSTRACT

Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.


Subject(s)
Acute Kidney Injury , Pyroptosis , Humans , Inflammasomes/metabolism , Lipopolysaccharides/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Kidney Injury/pathology , Inflammation/pathology , NLR Proteins , Endoplasmic Reticulum Stress
9.
J Mater Chem B ; 12(5): 1317-1329, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38229564

ABSTRACT

Bacterial biofilm infection is a serious obstacle to clinical therapeutics. Photodynamic therapy (PDT) plays a dynamic role in combating biofilm infection by utilizing reactive oxygen species (ROS)-induced bacterial oxidation injury, showing advantages of mild side effects, spatiotemporal controllability and little drug resistance. However, superfluous glutathione (GSH) present in biofilm and bacteria corporately reduces ROS levels and seriously affects PDT efficiency. Herein, we have constructed a Cu2+-infused porphyrin metal-organic framework (MOF@Cu2+) for the enhanced photodynamic combating of biofilm infection by the maximum depletion of GSH. Our results show that the released Cu2+ from porphyrin MOF@Cu2+ could not only oxidize GSH in biofilm but also consume GSH leaked from ROS-destroyed bacteria, thus greatly weakening the antioxidant system in biofilm and bacteria and dramatically improving the ROS levels. As expected, our dual-enhanced PDT nanoplatform exhibits a strong biofilm eradication ability both in vitro and in an in vivo biofilm-infected mouse model. In addition, Cu2+ can promote biofilm-infected wound closing by provoking cell immigration, collagen sediment and angiogenesis. Besides, no apparent toxicity was detected after treatment with MOF@Cu2+. Overall, our design offers a new paradigm for photodynamic combating biofilm infection.


Subject(s)
Photochemotherapy , Porphyrins , Animals , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Copper/pharmacology , Porphyrins/pharmacology , Reactive Oxygen Species , Glutathione , Bacteria , Biofilms
10.
Adv Healthc Mater ; 13(3): e2302117, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37922499

ABSTRACT

Prostate-specific antigen (PSA) is the common serum-relevant biomarker for early prostate cancer (PCa) detection in clinical diagnosis. However, it is difficult to accurately diagnose PCa in the early stage due to the low specificity of PSA. Herein, a new solution-gated graphene field transistor (SGGT) biosensor with dual-gate for dual-biomarker detection is designed. The sensing mechanism is that the designed aptamers immobilized on the surface of the gate electrodes can capture PSA and sarcosine (SAR) biomolecules and induce the capacitance changes of the electric double layers of SGGT. The limit of detections of PSA and SAR biomarkers can reach 0.01 fg mL-1 , which is three-to-four orders of magnitude lower than previously reported assays. The detection time of PSA and SAR is ≈4.5 and ≈13 min, which is significantly faster than the detection time (1-2 h) of conventional methods. The clinical serum samples testing demonstrates that the biosensor can distinguish the PCa patients from the control group and the diagnosis accuracy can reach 100%. The SGGT biosensor can be integrated into the portable platform and the diagnostic results can directly display on the smartphone/Pad. Therefore, the integrated portable platform of the biosensor can distinguish cancer types through the dual-biomarker detection.


Subject(s)
Biosensing Techniques , Graphite , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen , Prostatic Neoplasms/diagnosis , Electrodes , Biosensing Techniques/methods
11.
Metabolism ; 150: 155718, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925142

ABSTRACT

Podocytes are critical for maintaining permselectivity of the glomerular filtration barrier, and podocyte injury is a major cause of proteinuria in various primary and secondary glomerulopathies. Lipid dysmetabolism and inflammatory activation are the distinctive hallmarks of podocyte injury. Lipid accumulation and lipotoxicity trigger cytoskeletal rearrangement, insulin resistance, mitochondrial oxidative stress, and inflammation. Subsequently, inflammation promotes the progression of glomerulosclerosis and renal fibrosis via multiple pathways. These data suggest that lipid dysmetabolism positively or negatively regulates inflammation during podocyte injury. In this review, we summarize recent advances in the understanding of lipid metabolism and inflammation, and highlight the potential association between lipid metabolism and podocyte inflammation.


Subject(s)
Kidney Diseases , Podocytes , Humans , Lipid Metabolism , Podocytes/metabolism , Proteinuria/metabolism , Kidney Diseases/metabolism , Inflammation/metabolism , Lipids
12.
Ann Med ; 55(2): 2281659, 2023.
Article in English | MEDLINE | ID: mdl-38039548

ABSTRACT

PURPOSE: Individual genetic background can play an essential role in determining the development of esophageal squamous cell carcinoma (ESCC). PTPN13 and CHEK2 play important roles in the pathogenesis of ESCC. This case-control study aimed to analyze the association between gene polymorphisms and ESCC susceptibility. METHODS: DNA was extracted from the peripheral blood of patients. The Agena MassARRAY platform was used for the genotyping. Statistical analysis was conducted using the chi-squared test or Fisher's exact test, logistic regression analysis, and stratification analysis. RESULTS: The 'G' allele of rs989902 (PTPN13) and the 'T' allele of rs738722 (CHEK2) were both associated with an increased risk of ESCC (rs989902: OR = 1.23, 95% CI = 1.02-1.47, p = 0.028; rs738722: OR = 1.28, 95% CI = 1.06-1.55, p = 0.011). Stratification analysis showed that SNPs (rs989902 and rs738722) were notably correlated with an increased risk of ESCC after stratification for age, sex, smoking, and drinking status. In addition, rs738722 might be associated with lower stage, while rs989902 had a lower risk of metastasis. CONCLUSION: Our findings display that PTPN13 rs989902 and CHEK2 rs738722 are associated with an increased risk of ESCC in the Chinese Han population.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Carcinoma, Squamous Cell/genetics , Genetic Predisposition to Disease , Case-Control Studies , Polymorphism, Single Nucleotide , China/epidemiology , Genotype , Checkpoint Kinase 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics
13.
BMC Cancer ; 23(1): 1169, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38031100

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignant tumors, influenced by several genetic loci in its clinical phenotypes. The aim of this study was to determine the relationship between the MMP8 gene polymorphism and CRC risk in the Chinese Han population. METHOD: This study recruited 688 CRC patients and 690 healthy controls. The relationship between MMP8 polymorphism and CRC susceptibility was assessed by calculating the odds ratio (OR) and 95% confidence interval (CI) after stratifying by age, gender, body mass index (BMI), smoking, and alcohol consumption under a multi-genetic model. RESULTS: MMP8 rs3740938 was associated with increased CRC predisposition (p = 0.016, OR = 1.24, 95% CI: 1.04-1.48), and this association was detected particularly in subjects aged > 60 years, females, people with BMI > 24 kg/m2, smokers, and drinkers. Moreover, rs3740938 was found to be associated with the pathological type of rectal cancer. CONCLUSIONS: Our results first displayed that rs3740938 in MMP8 was a risk factor for CRC predisposition. This finding may provide a new biological perspective for understanding the role of the MMP8 gene in CRC pathogenesis.


Subject(s)
Colorectal Neoplasms , Genetic Predisposition to Disease , Female , Humans , Genotype , Matrix Metalloproteinase 8/genetics , Polymorphism, Single Nucleotide , Risk Factors , Colorectal Neoplasms/genetics , Case-Control Studies
14.
Chem Commun (Camb) ; 59(84): 12548-12559, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37791560

ABSTRACT

Bioorthogonal catalysis, a class of catalytic reactions that are mediated by abiotic metals and proceed in biological environments without interfering with native biochemical reactions, has gained ever-increasing momentum in prodrug delivery over the past few decades. Albeit great progress has been attained in developing new bioorthogonal catalytic reactions and optimizing the catalytic performance of transition metal catalysts (TMCs), the use of TMCs to activate chemotherapeutics at the site of interest in vivo remains a challenging endeavor. To translate the bioorthogonal catalysis-mediated prodrug activation paradigm from flasks to animals, TMCs with targeting capability and stimulus-responsive behavior have been well-designed to perform chemical transformations in a controlled manner within highly complex biochemical systems, rendering on-demand drug activation to mitigate off-target toxicity. Here, we review the recent advances in the development of controllable bioorthogonal catalysis systems, with an emphasis on different strategies for engineering TMCs to achieve precise control over prodrug activation. Furthermore, we outline the envisaged challenges and discuss future directions of controllable bioorthogonal catalysis for disease therapy.


Subject(s)
Prodrugs , Transition Elements , Animals , Prodrugs/pharmacology , Metals , Catalysis , Activation, Metabolic
15.
Eur J Radiol ; 168: 111146, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832198

ABSTRACT

OBJECTIVES: The purpose of this study was to establish a model for predicting the prognosis of patients with microvascular invasion (MVI)-negative hepatocellular carcinoma (HCC) based on qualitative and quantitative analyses of Gd-EOB-DTPA magnetic resonance imaging (MRI). MATERIALS AND METHODS: Consecutive patients with MVI-negative HCC who underwent preoperative Gd-EOB-DTPA MRI between January 2015 and December 2019 were retrospectively enrolled.In total, 122 patients were randomly assigned to the training and validation groups at a ratio of 7:3. Univariate and multivariate logistic regression analyses were performed to identify significant clinical parameters and MRI features, including quantitative and qualitative parameters associated with prognosis, which were incorporated into a predictive nomogram. The end-point of this study was recurrence-free survival. Outcomes were compared between groups using the Kaplan-Meier method with the log-rank test. RESULTS: During a median follow-up period of 58.86 months, 38 patients (31.15 %) experienced recurrence. Multivariate analysis revealed that lower relative enhancement ratio (RER), hepatobiliary phase hypointensity without arterial phase hyperenhancement, Liver Imaging Reporting and Data System category, mild-moderate T2 hyperintensity, and higher aspartate aminotransferase levels were risk factors associated with prognosis and then incorporated into the prognostic model. C-indices for training and validation groups were 0.732 and 0.692, respectively. The most appropriate cut-off value for RER was 1.197. Patients with RER ≤ 1.197 had significantly higher postoperative recurrence rates than those with RER > 1.197 (p = 0.004). CONCLUSION: The model integrating qualitative and quantitative imaging parameters and clinical parameters satisfactorily predicted the prognosis of patients with MVI-negative HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/blood supply , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/blood supply , Prognosis , Retrospective Studies , Contrast Media , Gadolinium DTPA , Magnetic Resonance Imaging/methods
16.
BMC Med Genomics ; 16(1): 209, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670284

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the most common malignancies, affected by several genetic loci in the clinical phenotype. This study aimed to determine the association between PTGER4 and PRKAA1 gene polymorphisms and the risk of GC. METHODS: A total of 509 GC patients and 507 age and sex-matched healthy controls were recruited to explore the association between PTGER4 and PRKAA1 genetic polymorphisms and GC susceptibility. Logistic regression analysis was used to study the correlation between these SNPs and GC, with odd ratio (OR) and 95% confidence interval (CI) as indicators. Multifactor dimensionality reduction was utilized to analyze the genetic relationships among SNPs. was conducted to predict gene expression, the impact of SNPs on gene expression, and the signaling pathways involved in PTGER4 and PRKAA1. RESULTS: Overall, rs10036575 in PTGER4 (OR = 0.82, p = 0.029), rs10074991 (OR = 0.82, p = 0.024) and rs13361707 (OR = 0.82, p = 0.030) in PRKAA1 were associated with susceptibility to GC. Stratification analysis revealed that the effects of these SNPs in PTGER4 and PRKAA1 on GC susceptibility were dependent on smoking and were associated with a reduced risk of adenocarcinoma (p < 0.05). Bioinformatics analysis showed an association between SNPs and corresponding gene expression (p < 0.05), and PRKAA1 may affect GC by mediating RhoA. CONCLUSION: This study suggests that PTGER4 and PRKAA1 SNPs might affect the susceptibility of GC, providing a new biological perspective for GC risk assessment, pathogenesis exploration, and personalized treatment.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , Humans , Polymorphism, Single Nucleotide , Computational Biology , Genetic Loci , Receptors, Prostaglandin E, EP4 Subtype , AMP-Activated Protein Kinases
17.
Front Oncol ; 13: 1192378, 2023.
Article in English | MEDLINE | ID: mdl-37588090

ABSTRACT

Background: Colorectal cancer (CRC) is the third most common malignant tumor in the world. The morbidity and mortality rates in Western countries have decreased, but they are still on the rise in China. C10orf90 is associated with a variety of cancers, but the correlation between C10orf90 and CRC is not yet known. Methods: A total of 1,339 subjects were randomly enrolled in our study. After extracting their DNA, three single-nucleotide polymorphisms (SNPs) of C10orf90 were genotyped to analyze the potential relationship between these variants and CRC risk. PLINK software packages (version 1.07) were used to evaluate multiple genetic models by calculating the odds ratio (OR) and 95% confidence interval (95% CI). The best SNP-SNP interaction model was defined by the multifactor dimensionality reduction (MDR) analysis. Results: C10orf90 rs12412320 was significantly associated with CRC risk (p = 0.006) and might be associated with the lower CRC risk (OR: 0.78; 95% CI: 0.65-0.93). The relationship of rs12412320 with lower CRC risk was found in people aged >60 years and ≤60 years, women, non-smokers, or non-drinkers. Rs11245008 in people aged ≤60 years and rs11245007 among men had a higher CRC susceptibility. Rs12412320 was related to the lower risk of advanced stages (III/IV stage), while rs11245007 might be associated with the higher risk of advanced stages (III/IV stage). Moreover, rs12412320 had the most significant relationship with the susceptibility to rectal cancer. Conclusion: This study is the first to report between C10orf90 gene polymorphisms and CRC risk in Chinese people, which suggests that C10orf90 rs12412320 might play a crucial role in preventing CRC occurrence.

18.
Abdom Radiol (NY) ; 48(11): 3362-3372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37561148

ABSTRACT

PURPOSE: To evaluate the histogram parameters of preoperative multiparametric magnetic resonance imaging (MRI) and clinical-radiological (CR) characteristics as prognostic predictors in patients with solitary hepatocellular carcinoma ≤ 5 cm and to determine the optimal time window for histogram analysis. METHODS: We retrospectively included 151 patients who underwent preoperative MRI between January 2012 and December 2017. All patients were randomly separated into training and validation cohorts (n = 105 and 46). Eight whole-lesion histogram parameters were extracted from T2-weighted images, apparent diffusion coefficient maps, and dynamic contrast-enhanced images. Univariate and multivariate logistic regression analyses were performed to evaluate these histogram parameters and CR variables related to early recurrence (ER) and recurrence-free survival. A nomogram was derived from the clinical-radiological-histogram (CRH) model that incorporated these risk factors. Kaplan-Meier survival analysis was performed to evaluate the prognostic performance of the CRH model. RESULTS: In total, 151 patients (male: female, 130: 21; median age, 54.46 ± 9.09 years) were evaluated. Multivariate logistic regression analysis revealed that the significant risk factors of ER were Mean Absolute Deviation and Minimum in the histogram analysis of the delayed phase images, as well as three important CR variables: albumin-bilirubin grade, microvascular invasion, and tumor size. The nomogram built by incorporating these risk factors showed satisfactory predictive ability in the training and validation cohorts with AUC values of 0.747 and 0.765, respectively. Furthermore, the prognostic nomogram can effectively classify patients into high- and low-risk groups (p < 0.05). CONCLUSION: Multiparametric MRI-derived histogram parameters provide additional value in predicting patient prognosis. The CRH model may be a useful and noninvasive method for achieving prognostic stratification and personalized disease management.

19.
Front Med (Lausanne) ; 10: 1183683, 2023.
Article in English | MEDLINE | ID: mdl-37457575

ABSTRACT

Objective: The aim of this study was to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) suited for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces the operative time and complications associated with prolonged anesthesia and placement in the prone position. Methods: A three-dimensional nonlinear finite element (FE) model of an intact L1-L5 lumbar spine was constructed and validated. The intact model was modified to generate a two-level OLIF surgery model augmented with three types of lateral fixation (stand-alone, SA; lateral rod screw, LRS; miniature lateral plate, mini-LP); the operative segments were L2-L3 and L3-L4. By applying a 500 N follower load and 7.5 Nm directional moment (flexion-extension, lateral bending, and axial rotation), all models were used to simulate human spine movement. Then, we extracted the range of motion (ROM), peak contact force of the bony endplate (PCFBE), peak equivalent stress of the cage (PESC), peak equivalent stress of fixation (PESF), and stress contour plots. Results: When compared with the intact model, the SA model achieved the least reduction in ROM to surgical segments in all motions. The ROM of the mini-LP model was slightly smaller than that of the LRS model. There were no significant differences in surgical segments (L1-L2, L4-L5) between all surgical models and the intact model. The PCFBE and PESC of the LRS and the mini-LP fixation models were lower than those of the SA model. However, the differences in PCFBE or PESC between the LRS- and mini-LP-based models were not significant. The fixation stress of the LRS- and mini-LP-based models was significantly lower than the yield strength under all loading conditions. In addition, the variances in the PESF in the LRS- and mini-LP-based models were not obvious. Conclusion: Our biomechanical FE analysis indicated that LRS or mini-LP fixation can both provide adequate biomechanical stability for two-level OLIF through a single incision. The newly designed mini-LP model seemed to be superior in installation convenience, and equally good outcomes were achieved with both LRS and mini-LP for two-level OLIF.

20.
Ren Fail ; 45(1): 2230318, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37427767

ABSTRACT

Podocytes play a critical role in maintaining normal glomerular filtration, and podocyte loss from the glomerular basement membrane (GBM) initiates and worsens chronic kidney disease (CKD). However, the exact mechanism underlying podocyte loss remains unclear. Fructose-2,6-biphosphatase 3 (PFKFB3) is a bifunctional enzyme that plays crucial roles in glycolysis, cell proliferation, cell survival, and cell adhesion. This study aimed to determine the role of PFKFB3 in angiotensin II (Ang II) kidney damage. We found that mice infused with Ang II developed glomerular podocyte detachment and impaired renal function accompanied by decreased PFKFB3 expression in vivo and in vitro. Inhibition of PFKFB3 with the PFKFB3 inhibitor 3PO further aggravated podocyte loss induced by Ang II. In contrast, activating PFKFB3 with the PFKFB3 agonist meclizine alleviated the podocyte loss induced by Ang II. Mechanistically, PFKFB3 knockdown likely aggravate Ang II-induced podocyte loss by suppressing talin1 phosphorylation and integrin beta1 subunit (ITGB1) activity. Conversely, PFKFB3 overexpression protected against Ang II-induced podocyte loss. These findings suggest that Ang II leads to a decrease in podocyte adhesion by suppressing PFKFB3 expression, and indicates a potential therapeutic target for podocyte injury in CKD.


Subject(s)
Phosphofructokinase-2 , Podocytes , Renal Insufficiency, Chronic , Animals , Mice , Angiotensin II/adverse effects , Down-Regulation , Phosphorylation , Podocytes/metabolism , Renal Insufficiency, Chronic/metabolism , Phosphofructokinase-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL