Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Spine (Phila Pa 1976) ; 48(16): 1174-1180, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37235799

ABSTRACT

STUDY DESIGN: A laboratory study comparing polyether ether ketone (PEEK)-zeolite and PEEK spinal implants in an ovine model. OBJECTIVE: This study challenges a conventional spinal implant material, PEEK, to PEEK-zeolite using a nonplated cervical ovine model. SUMMARY OF BACKGROUND DATA: Although widely used for spinal implants due to its material properties, PEEK is hydrophobic, resulting in poor osseointegration, and elicits a mild nonspecific foreign body response. Zeolites are negatively charged aluminosilicate materials that are hypothesized to reduce this pro-inflammatory response when used as a compounding material with PEEK. MATERIALS AND METHODS: Fourteen skeletally mature sheep were, each, implanted with one PEEK-zeolite interbody device and one PEEK interbody device. Both devices were packed with autograft and allograft material and randomly assigned to one of 2 cervical disc levels. The study involved 2 survival time points (12 and 26 weeks) and biomechanical, radiographic, and immunologic endpoints. One sheep expired from complications not related to the device or procedure. A biomechanical evaluation was based on measures of segmental flexibility, using 6 degrees of freedom pneumatic spine tester. Radiographic evaluation was performed using microcomputed tomography scans in a blinded manner by 3 physicians. Levels of the pro-inflammatory cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha at the implant, were quantified using immunohistochemistry. RESULTS: PEEK-zeolite and PEEK exhibited an equivalent range of motion in flexion extension, lateral bending, and axial torsion. A motion was significantly reduced for implanted devices at both time points as compared with native segments. Radiographic assessments of fusion and bone formation were similar for both devices. PEEK-zeolite exhibited lower levels of IL-1ß ( P = 0.0003) and IL-6 ( P = 0.03). CONCLUSION: PEEK-zeolite interbody fusion devices provide initial fixation substantially equivalent to PEEK implants but exhibit a reduced pro-inflammatory response. PEEK-zeolite devices may reduce the chronic inflammation and fibrosis previously observed with PEEK devices.


Subject(s)
Spinal Fusion , Zeolites , Animals , Sheep , X-Ray Microtomography/methods , Interleukin-6 , Polyethylene Glycols/chemistry , Ketones/chemistry , Ethers , Spinal Fusion/methods , Biomechanical Phenomena
2.
Int J Spine Surg ; 14(s3): S56-S62, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33122184

ABSTRACT

BACKGROUND: Expandable cages have gone through several iterations since they first appeared on the market in the early 2000s. Their development was prompted by some common problems associated with static interbody cages, including migration, expulsion, dural or neural traction injury, and pseudarthrosis. OBJECTIVE: To summarize current technological advances from earlier expandable lumbar interbody fusion devices to implants with vertical and medial-to-lateral expansion mechanisms. METHODS: The authors review the currently available expandable cage designs, the incremental technological advances, and how these devices impact minimally invasive surgery interbody procedures and clinical outcomes. The strategic concepts intended to improve the minimally invasive application of expandable interbody fusion implants are reviewed from a surgeon's perspective in a clinical context to discuss how their use may improve patient outcomes. CONCLUSIONS: The geometrical configuration, effective stiffness of composite multi-material cage designs may impact the bone-implant contact area with the endplates. Hybridization strategies of expandable cage technology with modern minimally invasive and endoscopic spinal surgery techniques are presented by outlining their advantages and disadvantages. LEVEL OF EVIDENCE: 1 CLINICAL RELEVANCE: Systematic review.

3.
Int J Spine Surg ; 10: 20, 2016.
Article in English | MEDLINE | ID: mdl-27441178

ABSTRACT

BACKGROUND: While low back pain is one of the most prevalent, if not the most prevalent reasons for visits to physicians, a majority of patients with low back pain cannot be given a definitive diagnosis. While there have been substantial advances in imaging technologies over the past 30 years, relatively little has changed in the methodologies for evaluating functionality of the lumbar spine. The current standard of care for function assessment of the lumbar spine focuses on uncontrolled patient directed motion which results in increased inter-patient variability. Recent advancements in functional lumbar spine testing utilize controlled bending and computerized imaging evaluation. PURPOSE: To compare the measurement variability of lumbar spine motion when diagnosed using measurements of intervertebral motion taken from standard bending flexion/extension radiographs (FE) between uncontrolled and controlled motion. STUDY DESIGN: One-hundred nine patients (57 asymptomatic, 52 symptomatic) were consented in the prospective investigation. The research was designed to compare studies involving FE to controlled motion bending radiographs using the Vertebral Motion Analysis (VMA), (Ortho Kinematics, Inc) within the same patient. Each patient agreed to undergo fluoroscopic still imaging to capture FE data and to undergo cine fluoroscopic imaging to capture VMA data. OUTCOME MEASURES: Measurement variability was determined by the mean and standard deviation of intervertebral rotation when evaluated by 5 independent observers evaluating each of the 109 patients FE and VMA. The resulting standard deviation of the intervertebral rotation determinations was used as the measure of variability. METHODS: The VMA measurements for assessing intervertebral motion were characterized by the use of: (1) a handling device that assists patients through a standard arc of lumbar bending in both an upright and recumbent posture (70 degree flexion/extension arcs; 60 degree left/right bending arcs); (2) video fluoroscopy imaging of the lumbar spine during bending (capturing images at 8 frames per second); and (3) image processing software capable of automatic frame-to-frame registration and tracking of vertebral bodies across the sequence of video-fluoroscopic images to derive measurements of intervertebral rotation and translation. The FE data were assessed from voluntary bending by the patient. RESULTS: There was statistical greater measurement variability in intervertebral rotation in FE when compared to VMA (both standing and lying). When comparing measurement variability between FE and VMA, results indicate between a 26% to 46% decrease in measurement variability under VMA compared to FE. These findings are consistent across asymptomatic and symptomatic patients. CONCLUSIONS: The current standard of care for functional testing of the lumbar spine utilizes uncontrolled FE with a manual data evaluation process. Recent developments in using computerized imaging processes has improved, however there remains variability in patient bending due to the self-selected rate and position of the bending. VMA results in a significant reduction in measurement variability of intervertebral rotation measurements.

4.
Clin Spine Surg ; 29(7): E325-30, 2016 08.
Article in English | MEDLINE | ID: mdl-23059703

ABSTRACT

STUDY DESIGN: A comparative biomechanical human cadaveric spine study of a dynamic fusion rod and a traditional titanium rod. OBJECTIVE: The purpose of this study was to measure and compare the biomechanical metrics associated with a dynamic fusion device, Isobar TTL Evolution, and a rigid rod. SUMMARY OF BACKGROUND DATA: Dynamic fusion rods may enhance arthrodesis compared with a rigid rod. Wolff's law implies that bone remodeling and growth may be enhanced through anterior column loading (AL). This is important for dynamic fusion rods because their purpose is to increase AL. METHODS: Six fresh-frozen lumbar cadaveric specimens were used. Each untreated specimen (Intact) underwent biomechanical testing. Next, each specimen had a unilateral transforaminal lumbar interbody fusion performed at L3-L4 using a cage with an integrated load cell. Pedicle screws were also placed at this time. Subsequently, the Isobar was implanted and tested, and finally, a rigid rod replaced the Isobar in the same pedicle screw arrangement. RESULTS: In terms of range of motion, the Isobar performed comparably to the rigid rod and there was no statistical difference found between Isobar and rigid rod. There was a significant difference between the intact and rigid rod and also between intact and Isobar conditions in flexion extension. For interpedicular displacement, there was a significant increase in flexion extension (P=0.017) for the Isobar compared with the rigid rod. Isobar showed increased AL under axial compression compared with the rigid rod (P=0.024). CONCLUSIONS: Isobar provided comparable stabilization to a rigid rod when using range of motion as the metric, however, AL was increased because of the greater interpedicular displacement of dynamic rod compared with a rigid rod. By increasing interpedicular displacement and AL, it potentially brings clinical benefit to procedures relying on arthrodesis.


Subject(s)
Lumbar Vertebrae/physiology , Pedicle Screws , Range of Motion, Articular/physiology , Spinal Fusion/instrumentation , Spinal Fusion/methods , Biomechanical Phenomena , Cadaver , Humans , Internal Fixators , Lumbosacral Region , Rotation
5.
Int J Spine Surg ; 9: 31, 2015.
Article in English | MEDLINE | ID: mdl-26273549
6.
Int J Spine Surg ; 9: 9, 2015.
Article in English | MEDLINE | ID: mdl-26131403

ABSTRACT

BACKGROUND: Lumbar interbody fusion is a common treatment for a variety of spinal pathologies. It has been hypothesized that insufficient mechanical loading of the interbody graft can prevent proper fusion of the joint. The purpose of this study was to evaluate the mechanical stability and anterior column loading sharing characteristics of a posterior dynamic system compared to titanium rods in an anterior lumbar interbody fusion (ALIF) model. METHODS: Range of motion, interpedicular kinematics and interbody graft loading were measured in human cadaveric lumbar segments tested under a pure moment flexibility testing protocol. RESULTS: Both systems provided significant fixation compared to the intact condition and to an interbody spacer alone in flexion extension and lateral bending. No significant differences in fixation were detected between the devices. A significant decrease in graft loading was detected in flexion for the titanium rod treatment compared to spacer alone. No significant differences in graft loading were detected between the spacer alone and posterior dynamic system or between the posterior dynamic system and the titanium rod. CONCLUSIONS: The results of this study indicate that the posterior dynamic system provides similar fixation compared to that of a titanium rod, however, studies designed to evaluate the efficacy of fixation in a cadaver model may not be sufficiently powered to establish differences in load sharing using the techniques described here.

7.
Int J Spine Surg ; 9: 5, 2015.
Article in English | MEDLINE | ID: mdl-25785241

ABSTRACT

BACKGROUND: A thorough understanding of the biomechanical characteristics of the healthy human spine is critical in furthering the treatment of spinal pathology. The goal of this study was to investigate the motion of the intact lumbar spine segment as measured by range of motion (ROM), and to investigate the dependencies thereof on gender and intervertebral level. MATERIALS AND METHODS: Kinematic data was obtained for 42 human lumbar segments (L1-S1) in response to a pure-moment loading protocol in flexion extension (FE), lateral bending (LB) and axial torsion (AT). Data was obtained for 204 individual functional spinal units (91 female, 113 male). Multivariate analysis of variance was conducted to detect differences between genders and intervertebral levels in each mode of loading. Correlations between ROM and donor demographics, including height, weight, and age, were conducted. RESULTS: ROM was significantly greater for females than for males in FE, LB and AT (p<0.001). ROM tended to increase down the vertebral column in FE. L3-4 FE ROM was significantly greater than L1-2 (p=0.024), and L4-5 and L5-S1 FE ROM were significantly greater than for every other level (p<0.003). LB ROM tended to be greater toward the center of the segment with L2-3, L3-4 and L4-5 ROM being significantly greater than both L1-2 (p<0.001) and L5-S1 (p=0.006, p<0.001, p=0.043, respectively). A similar trend was found for AT, however only L1-2 was significantly less than all other levels (p=0.042, p<0.001, p<0.001, and p=0.034 for L2-3, L3-4, L4-5, and L5-S1 respectively). CONCLUSION: The significant differences in lumbar ROM between male and female spine segments and between the intervertebral levels must be taken into account in study design in order to prevent biases in outcomes. The significant differences in ROM between levels may also have critical implications in the design of spinal implants, particularly those designed to maintain or restore healthy motion.

8.
Spine (Phila Pa 1976) ; 39(11): 922, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24718055
9.
10.
Int J Spine Surg ; 6: 1-7, 2012.
Article in English | MEDLINE | ID: mdl-25694863

ABSTRACT

BACKGROUND: Pure moment testing is a common method used in cadaveric spine testing. The fundamental basis for the widespread acceptance of applying a pure moment is uniform loading along the column of the spine. To our knowledge, this protocol has not been experimentally verified on a multi-degree of freedom testing apparatus. Given its ubiquitous use in spine biomechanics laboratories, confirmation of this comparative cadaveric test protocol is paramount. METHODS: Group A specimens (n =13) were used to test the pure moment protocol, by use of 3 constructs that changed the number of involved vertebrae, orientation, and rigidity of the spine construct. Group B specimens (n = 6) were used to determine whether potting orientation, testing order, or degradation affected the range of motion (ROM) by use of 8 constructs. Each group was subjected to 3 cycles of flexion-extension, lateral bending, and axial torsion. The data from the third cycle were used to calculate the ROM for each method. RESULTS: Group A testing resulted in significant differences in ROM across the 3 constructs for lateral bending and axial torsion (P < .02) and trended toward a difference for flexion-extension (P = .055). Group B testing showed an increase in ROM across 8 constructs (P < .04) but no significant difference due to the orientation change. CONCLUSION: The increased ROM across constructs observed in both groups indicates that the cause is likely the testing order or degradation of the specimens, with orientation having no observed effect. The data do not invalidate pure moment testing, and its use should persist.

11.
Int J Spine Surg ; 6: 167-73, 2012.
Article in English | MEDLINE | ID: mdl-25694886

ABSTRACT

BACKGROUND: The application of kinematic data acquired during biomechanical testing to specimen-specific, three-dimensional models of the spine has emerged as a useful tool in spine biomechanics research. However, the development of these models is subject to segmentation error because of complex morphology and pathologic changes of the spine. This error has not been previously characterized. METHODS: Eight cadaveric lumbar spines were prepared and underwent computed tomography (CT) scanning. After disarticulation and soft-tissue removal, 5 individual vertebrae from these specimens were scanned a second time. The CT images of the full lumbar specimens were segmented twice each by 2 operators, and the images of the individual vertebrae with soft tissue removed were segmented as well. The solid models derived from these differing segmentation sessions were registered, and the distribution of distances between nearest neighboring points was calculated to evaluate the accuracy and precision of the segmentation technique. RESULTS: Manual segmentation yielded root-mean-square errors below 0.39 mm for accuracy, 0.33 mm for intrauser precision, and 0.35 mm for interuser precision. Furthermore, the 95th percentile of all distances was below 0.75 mm for all analyses of accuracy and precision. CONCLUSIONS: These findings indicate that such models are highly accurate and that a high level of intrauser and interuser precision can be achieved. The magnitude of the error presented here should inform the design and interpretation of future studies using manual segmentation techniques to derive models of the lumbar spine.

12.
SAS J ; 5(1): 9-15, 2011.
Article in English | MEDLINE | ID: mdl-25802663

ABSTRACT

BACKGROUND: Disc protrusion has been proposed to be a possible cause of both pain and stenosis in the lower spine. No previous study has described the amount of disc occlusion of the spinal canal and intervertebral foramen that occurs under different loading conditions. The objective of this study was to quantitatively assess the percent occlusion of the spinal canal and intervertebral foramen by disc bulge under different loading conditions. METHODS: Spinal canal depth and foraminal width were measured on computed tomography-scanned images of 7 human lumbar spine specimens. In vitro disc bulge measurements were completed by use of a previously described method in which single functional spinal units were subjected to 3 separate load protocols in a spine test machine and disc bulge was recorded with an optoelectric motion system that tracked active light-emitting diodes placed on the posterior and posterolateral aspects of the intervertebral disc. Occlusion was defined as percentage of encroachment into area of interest by maximum measured disc bulge at corresponding point of interest (the spinal canal is at the posterior point; the intervertebral foramen is at the posterolateral point). RESULTS: The mean spinal canal depth and mean foraminal width were 19 4 ± mm and 5 ± 2 mm, respectively. Mean spinal canal occlusion under a 250-N axial load, ± 2.5 Nm of flexion/extension, and ± 2.5 Nm of lateral bend was 2.5% ± 1.9%, 2.5% ± 1.6%, and 1.5% ± 0.8%, respectively. Mean intervertebral foramen occlusion under a 250-N axial load, ± 2.5 Nm of flexion/extension, and ± 2.5 Nm of lateral bend was 7.8% ± 4.7%, 9.5% ± 5.7%, and 11.3% ± 6.2%, respectively. CONCLUSION: Percent occlusion of the spinal canal and intervertebral foramen is dependent on magnitude and direction of load. Exiting neural elements at the location of the intervertebral foramen are the most vulnerable to impingement and generation of pain.

SELECTION OF CITATIONS
SEARCH DETAIL