Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 477: 135376, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39111175

ABSTRACT

Avermectin is a highly effective insecticide that has been widely used in agriculture since the 1990s. In recent years, the safety of avermectin for non-target organisms has received much attention. The vasculature is important organs in the body and participate in the composition of other organs. However, studies on the vascular safety of avermectin are lacking. The vasculature of zebrafish larvae is characterized by ease of observation and it is a commonly used model for vascular studies. Therefore, zebrafish larvae were used to explore the potential risk of avermectin on the vasculature. The results showed that avermectin induced vascular damage throughout the body of zebrafish larvae, including the head, eyes, intestine, somite, tail and other vasculature. The main forms of damage are reduction in vascular diameter, vascular area and vascular abundance. Meanwhile, avermectin induced a decrease in the number of endothelial cells and apoptosis within the vasculature. In addition, vascular damage may be related to impairment of mitochondrial function and mitochondria-mediated apoptosis. Finally, exploration of the molecular mechanisms revealed abnormal alterations in the expression of genes related to the VEGF/Notch signaling pathway. Therefore, the VEGF/Notch signaling pathway may be an important mechanism for avermectin-induced vascular damage in zebrafish larvae. This study demonstrates the vascular toxicity of avermectin in zebrafish larvae and reveals the possible molecular mechanism, which would hopefully draw more attention to the safety of avermectin in non-target organisms.


Subject(s)
Apoptosis , Ivermectin , Larva , Mitochondria , Receptors, Notch , Signal Transduction , Vascular Endothelial Growth Factor A , Zebrafish , Animals , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Apoptosis/drug effects , Signal Transduction/drug effects , Larva/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Receptors, Notch/metabolism , Insecticides/toxicity , Blood Vessels/drug effects
2.
Chemosphere ; 343: 140237, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37734501

ABSTRACT

Spinosad is a highly effective macrolide insecticide with a wide range of applications. However, few studies have been reported on the effects of Spinosad on immune cells. The immune system is an important line of defense in the human body and plays an important role in maintaining the normal functioning of the organism. Meanwhile, macrophages, neutrophils and Thymic T cells are an important component of the immune system. We studied the immunotoxicity of Spinosad using zebrafish and THP-1 cells. In vivo, Spinosad (0-20 µM) did not cause developmental toxicity in zebrafish, but induced damage to immune cells. In vitro, Spinosad (0-20 µM) inhibited THP-1 cells viability and induced mitochondrial damage and oxidative stress production. In further studies, it impaired phagocytosis of THP-1 cells and interfered with lipid metabolism. In addition, we found that Spinosad can promote the formation of the inflammatory body NLRP3 (NLR family, pyrin domain-containing 3) and activate the NF-kappa B (NF-κB) signaling pathway. These results suggest that Spinosad has a potential risk for inducing immunotoxicity. This study has drawn attention to Spinosad-induced immunotoxicity.

3.
Pest Manag Sci ; 79(3): 1086-1093, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36334017

ABSTRACT

BACKGROUND: Ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) in an insect is the major inhibitory receptor and is one of the most important targets for insecticides. Due to the high spatiotemporal resolution of GABAR, the photopharmacological ligands acting on it in vertebrates but not insect have been developed. RESULTS: In this study, two types of photochromic ligands (PCLs) including DTFIPs (DTFIP1 and DTFIP2) and ABFIPs (p-, m-, and o-ABFIP) were synthesized by incorporating photoswitch azobenzene or dithienylethene into fipronil (FIP), which is the antagonist of insect GABAR. Their photomodulation was measured by mosquito larval behavior, and their potential action mechanism was explored by the two-electrode voltage clamp (TEVC) technique in vitro. DTFIP1 and m-ABFIP exhibited the most significant difference of insecticidal activity by about 90- and 5-fold to mosquito larvae between non-irradiated and irradiated formation, respectively, and allowed for optical control of mosquito swimming activity. TEVC assay results indicated that m-ABFIP and DTFIP1 enable optical control over the homomeric LsRDL-type GABAR, which is achieved by regulating the chloride channel of resistance to dieldrin (RDL)-type GABAR by photoisomerization. CONCLUSION: Our results suggested that PCLs synthesized from fipronil provide an alternative and precise tool for studying insect ionotropic GABARs and GABA-dependent behavior. © 2022 Society of Chemical Industry.


Subject(s)
Insecticides , Receptors, GABA , Animals , Receptors, GABA/metabolism , Insecta/metabolism , Chloride Channels , Insecticides/pharmacology , gamma-Aminobutyric Acid/pharmacology
4.
J Recept Signal Transduct Res ; 36(1): 103-9, 2016.
Article in English | MEDLINE | ID: mdl-26416217

ABSTRACT

The three-dimensional quantitative structure-activity relationships (3D-QSAR) were established for 30 oxindole derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by using comparative molecular field analysis (CoMFA) and comparative similarity indices analysis comparative molecular similarity indices analysis (CoMSIA) techniques. With the CoMFA model, the cross-validated value (q(2)) was 0.777, the non-cross-validated value (R(2)) was 0.987, and the external cross-validated value ([Formula: see text]) was 0.72. And with the CoMSIA model, the corresponding q(2), R(2) and [Formula: see text] values were 0.710, 0.988 and 0.78, respectively. Docking studies were employed to bind the inhibitors into the active site to determine the probable binding conformation. The binding mode obtained by molecular docking was in good agreement with the 3D-QSAR results. Based on the QSAR models and the docking binding mode, a set of new VEGFR-2 tyrosine kinase inhibitors were designed, which showed excellent predicting inhibiting potencies. The result revealed that both QSAR models have good predictive capability to guide the design and structural modification of homologic compounds. It is also helpful for further research and development of new VEGFR-2 tyrosine kinase inhibitors.


Subject(s)
Indoles/chemistry , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Binding Sites , Catalytic Domain , Humans , Oxindoles , Protein Binding
5.
Bioorg Med Chem Lett ; 22(24): 7440-3, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23122522

ABSTRACT

A series of di-indolinone derivatives was designed and synthesized to optimize our lead compounds basing on molecular docking study as PTP1B inhibitors. Successive enzymatic assay identified the synthetic di-indolinone as novel PTP1B inhibitors with low micromole-ranged inhibitory activity and at least several-fold selectivity over other tested homologous PTPs.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Structure-Activity Relationship
6.
J Asian Nat Prod Res ; 14(5): 496-502, 2012.
Article in English | MEDLINE | ID: mdl-22423972

ABSTRACT

Argutalactone (1), a novel sesquiterpenoid lactone featuring an unprecedented 6/5/7 rigid skeleton, was isolated from the roots of Incarvillea arguta. The structure and relative configuration of 1 were established by extensive analysis of spectroscopic data. The absolute configuration of 1 was determined as 2R,5S,10R,12S based on the analysis of biogenetical transformation, comparison of the optical rotation with literature data, and comparison of the experimental circular dichroism spectrum with the calculated electronic circular dichroism spectra.


Subject(s)
Bignoniaceae/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Lactones/chemistry , Lactones/isolation & purification , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Circular Dichroism , Molecular Structure , Plant Roots/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL