Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.898
1.
Adv Mater ; : e2403848, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837906

All-solid-state lithium batteries with polymer electrolytes suffer from the electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy was proposed to modulate the Li+ coordinated structure, thus in-situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF-rich, thin and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li-Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows the excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate the interfacial chemistry by modulating ion environment to accommodate the interfacial issues, and would inspire more effective approaches to general interface issues for polymer electrolytes. This article is protected by copyright. All rights reserved.

3.
Article En | MEDLINE | ID: mdl-38828708

OBJECTIVE: Biliary atresia (BA) is the leading cause of liver cirrhosis and chronic liver insufficiency in children in the world. Gastroesophageal varices bleeding is an ominous complication of cirrhosis in BA patients and is associated with high morbidity and mortality. In this study, we aimed to investigate the utility of noninvasive Baveno VI and Baveno VII criteria for the screening of varices need treatment (VNT) and the need for liver transplantation in BA patients. METHODS: This study enrolled 48 BA patients (23 females and 25 males) who underwent an esophagogastroduodenoscopy (EGD) and transient elastography at a mean age of 11.18 ± 1.48 years; the clinical data were surveyed in a retrospective design. RESULTS: The sensitivity and negative predictive value of Baveno VI and Baveno VII criteria for the prediction of VNT in BA patients are both 100% and 100%, respectively. The VNT missing rate of Baveno VI and Baveno VII criteria are both 0% in our cohort. The Baveno VI, expanded Baveno VI, and Baveno VII criteria are also predictive of the need for liver transplantation in our cohort (OR = 10.33, 4.24, and 21.33; p = 0.009, 0.03, and 0.007, respectively). CONCLUSION: The Baveno VI and Baveno VII criteria are useful for the screening of VNT and minimize non-necessary invasive EGD in BA patients with low VNT missing rates. The Baveno VI, expanded Baveno VI, and Baveno VII criteria are associated with the need for liver transplantation.

4.
J Phys Chem A ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832757

Alkanes, ideal raw materials for industrial chemical production, typically exhibit limited reactivity due to their robust and weakly polarized C-H bonds. The challenge lies in selectively activating these C-H bonds under mild conditions. To address this challenge, various C-H activation mechanisms have been developed. Yet, classifying these mechanisms depends on the overall stoichiometry, which can be ambiguous and sometimes problematic. In this study, we utilized density functional theory calculations combined with intrinsic bond orbital (IBO) analysis to examine electron flow in the four primary alkane C-H activation mechanisms: oxidative addition, σ-bond metathesis, 1,2-addition, and electrophilic activation. Methane was selected as the representative alkane molecule to undergo C-H heterolytic cleavage in these reactions. Across all mechanisms studied, we find that the CH3 moiety in methane consistently uses an electron pair from the cleaved C-H bond to form a σ-bond with the metal. Yet, the electron pair that accepts the proton differs with each mechanism: in oxidative addition, it is derived from the d-orbitals; in σ-bond metathesis, it resulted from the metal-ligand σ-bonds; in 1,2-addition, it arose from the π-orbital of the metal-ligand multiple bonds; and in electrophilic activation, it came from the lone pairs on ligands. This detailed analysis not only provides a clear visual understanding of these reactions but also showcases the ability of the IBO method to differentiate between mechanisms. The electron flow discerned from IBO analysis is further corroborated by results from absolutely localized molecular orbital energy decomposition analysis, which also helps to quantify the two predominant interactions in each process. Our findings offer profound insights into the electron dynamics at play in alkane C-H activation, enhancing our understanding of these critical reactions.

5.
Article En | MEDLINE | ID: mdl-38836765

Background: This study evaluated the associations between inattention, impulsivity, and attention deficit hyperactivity disorder (ADHD) in women with premenstrual dysphoric disorder (PMDD) across the menstrual cycle. Methods: This study enrolled 58 women with PMDD and 50 controls. Symptoms were assessed using the Attention and Performance Self-Assessment Scale and the Dickman Impulsivity Inventory during the pre-ovulatory (PO), mid-luteal (ML), and late luteal (LL) phases of the menstrual cycle. Results: The chi-square analysis revealed a significant association between ADHD and PMDD. Women with PMDD experienced a greater increase in scores of prospective everyday memory problems and difficulties maintaining focused attention from the PO phase to LL phase than the controls; in addition, they had higher scores in dysfunctional impulsivity during the LL phase than the controls. Among women in the PMDD group, those with ADHD had higher scores in prospective everyday memory problems and dysfunctional impulsivity during the PO and ML phases than those without ADHD. Women in the PMDD group without ADHD had a greater increase in scores of prospective everyday memory problems, difficulties maintaining focused attention, and dysfunctional impulsivity from the PO phase to the LL phase than the controls. Conclusion: Our study demonstrated that women with PMDD were more likely to have comorbid ADHD and higher levels of inattention across the menstrual cycle. PMDD was associated with increased impulsivity during the LL phase, independent of ADHD, but it was not associated with a persistent elevation of impulsivity. Furthermore, PMDD women with comorbid ADHD experienced higher inattention and impulsivity during the PO and ML phases than those without it. Thus, ADHD comorbidity should be assessed when assessing or intervening in the symptoms of inattention and impulsivity in women with PMDD.

6.
Plant Cell ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38691576

Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.

7.
Comput Biol Med ; 176: 108597, 2024 Jun.
Article En | MEDLINE | ID: mdl-38763069

BACKGROUND: Recessive GJB2 variants, the most common genetic cause of hearing loss, may contribute to progressive sensorineural hearing loss (SNHL). The aim of this study is to build a realistic predictive model for GJB2-related SNHL using machine learning to enable personalized medical planning for timely intervention. METHOD: Patients with SNHL with confirmed biallelic GJB2 variants in a nationwide cohort between 2005 and 2022 were included. Different data preprocessing protocols and computational algorithms were combined to construct a prediction model. We randomly divided the dataset into training, validation, and test sets at a ratio of 72:8:20, and repeated this process ten times to obtain an average result. The performance of the models was evaluated using the mean absolute error (MAE), which refers to the discrepancy between the predicted and actual hearing thresholds. RESULTS: We enrolled 449 patients with 2184 audiograms available for deep learning analysis. SNHL progression was identified in all models and was independent of age, sex, and genotype. The average hearing progression rate was 0.61 dB HL per year. The best MAE for linear regression, multilayer perceptron, long short-term memory, and attention model were 4.42, 4.38, 4.34, and 4.76 dB HL, respectively. The long short-term memory model performed best with an average MAE of 4.34 dB HL and acceptable accuracy for up to 4 years. CONCLUSIONS: We have developed a prognostic model that uses machine learning to approximate realistic hearing progression in GJB2-related SNHL, allowing for the design of individualized medical plans, such as recommending the optimal follow-up interval for this population.


Connexin 26 , Hearing Loss, Sensorineural , Machine Learning , Humans , Connexin 26/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Female , Male , Adult , Child , Adolescent , Middle Aged , Child, Preschool
8.
J Am Chem Soc ; 146(22): 15176-15185, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38770641

Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.

9.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38776366

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Chloroplasts , Glutamate-Ammonia Ligase , Hemiptera , Insect Vectors , Oryza , Phytoplasma , Plant Leaves , Animals , Hemiptera/microbiology , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/genetics , Phytoplasma/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Oryza/microbiology , Oryza/genetics , Insect Vectors/microbiology , Chloroplasts/metabolism , Plant Diseases/microbiology , Chlorophyll/metabolism , Plants, Genetically Modified , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
10.
J Environ Manage ; 360: 121066, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744202

The biotic nitrate reduction rate in freshwater ecosystems is typically constrained by the scarcity of carbon sources. In this study, 'two-chambers' - 'two-electrodes' photoautotrophic biofilm-soil microbial fuel cells (P-SMFC) was developed to accelerate nitrate reduction by activating in situ electron donors that originated from the soil organic carbon (SOC). The nitrate reduction rate of P-SMFC (0.1341 d-1) improved by âˆ¼ 1.6 times on the 28th day compared to the control photoautotrophic biofilm. The relative abundance of electroactive bacterium increased in the P-SMFC and this bacterium contributed to obtain electrons from SOC. Biochar amendment decreased the resistivity of P-SMFC, increased the electron transferring efficiency, and mitigated anodic acidification, which continuously facilitated the thriving of putative electroactive bacterium and promoted current generation. The results from physiological and ecological tests revealed that the cathodic photoautotrophic biofilm produced more extracellular protein, increased the relative abundance of Lachnospiraceae, Magnetospirillaceae, Pseudomonadaceae, and Sphingomonadaceae, and improved the activity of nitrate reductase and ATPase. Correspondingly, P-SMFC in the presence of biochar achieved the highest reaction rate constant for nitrate reduction (kobs) (0.2092 d-1) which was 2.4 times higher than the control photoautotrophic biofilm. This study provided a new strategy to vitalize in situ carbon sources in paddy soil for nitrate reduction by the construction of P-SMFC.


Bioelectric Energy Sources , Biofilms , Nitrates , Soil , Nitrates/metabolism , Soil/chemistry , Soil Microbiology , Electrodes , Carbon/metabolism , Oxidation-Reduction
11.
Brief Bioinform ; 25(4)2024 May 23.
Article En | MEDLINE | ID: mdl-38819254

Single-cell RNA sequencing has revealed cellular heterogeneity in complex tissues, notably benefiting research on diseases such as cancer. However, the integration of single-cell data from small samples with extensive clinical features in bulk data remains underexplored. In this study, we introduce PIPET, an algorithmic method for predicting relevant subpopulations in single-cell data based on multivariate phenotypic information from bulk data. PIPET generates feature vectors for each phenotype from differentially expressed genes in bulk data and then identifies relevant cellular subpopulations by assessing the similarity between single-cell data and these vectors. Subsequently, phenotype-related cell states can be analyzed based on these subpopulations. In simulated datasets, PIPET showed robust performance in predicting multiclassification cellular subpopulations. Application of PIPET to lung adenocarcinoma single-cell RNA sequencing data revealed cellular subpopulations with poor survival and associations with TP53 mutations. Similarly, in breast cancer single-cell data, PIPET identified cellular subpopulations associated with the PAM50 clinical subtypes and triple-negative breast cancer subtypes. Overall, PIPET effectively identified relevant cellular subpopulations in single-cell data, guided by phenotypic information from bulk data. This approach comprehensively delineates the molecular characteristics of each cellular subpopulation, offering insights into disease-related subpopulations and guiding personalized treatment strategies.


Algorithms , Phenotype , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Sequence Analysis, RNA/methods , Computational Biology/methods , Mutation , Female , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology
12.
3D Print Med ; 10(1): 18, 2024 May 31.
Article En | MEDLINE | ID: mdl-38819766

BACKGROUND: Ulnar shortening osteotomy (USO) has demonstrated good outcomes for patients with ulnar impaction syndrome. To minimize complications such as non-union, precise osteotomy and firm fixation are warranted. Despite various ulnar shortening systems have been developed, current technology does not meet all needs. A considerable portion of patients could not afford those designated USO systems. To tackle this challenge, our team reported successful results in standardized free-hand predrilled USO technique. However, it is still technical demanding and requires sufficient experience and confidence to excel. Therefore, our team designed an ulnar shortening system based on our free-hand technique principle, using metal additive manufacturing technology. The goal of this study is to describe the development process and report the performance of the system. METHODS: Utilizing metal additive manufacturing technology, our team developed an ulnar shortening system that requires minimal exposure, facilitates precise cutting, and allows for the easy placement of a 3.5 mm dynamic compression plate, available to patients at zero out-of-pocket cost. For performance testing, two surgeons with different levels of experience in ulnar shortening procedures were included: one fellow-trained hand and wrist surgeon and one senior resident. They performed ulnar shortening osteotomy (USO) using both the free-hand technique and the USO system-assisted technique on ulna sawbones, repeating each method three times. The recorded parameters included time-to-complete-osteotomy, total procedure time, chip diameter, shortening length, maximum residual gap, and deviation angle. RESULTS: For the hand and wrist fellow, with the USO system, the time-to-complete osteotomy was significantly reduced. (468.7 ± 63.6 to 260.0 ± 5 s, p < 0.05). Despite the preop goal was shortening 3 mm, the average shortening length was significantly larger in the free-hand group (5 ± 0.1; 3.2 ± 0.2 mm, p < 0.05). Both maximum residual gap and deviation angle reported no statistical difference between the two techniques for the hand surgeon. As for the senior resident, the maximum residual gap was significantly reduced, using the USO system (2.9 ± 0.8; 0.4 ± 0.4 mm, p = 0.02). Between two surgeons, significant larger maximum residual gap and deviation angle were noted on the senior resident doctor, in the free-hand technique group, but not in the USO system group. CONCLUSION: The developed USO system may serve as a valuable tool, aiding in reliable and precise cutting as well as fixation for patients undergoing ulnar shortening osteotomy with a 3.5 mm dynamic compression plate, even for less experienced surgeons. The entire process, from concept generation and sketching to creating the CAD file and final production, serves as a translatable reference for other surgical scenarios.

13.
Sci Total Environ ; 936: 173476, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38788950

Ambient fine particulate matter (PM2.5) comprises a diverse array of carbonaceous species, and the impact of carbonaceous aerosols (CA) extends to both long-term and short-term effects on human health and the environment. Understanding the distinctive composition of CA is crucial for gaining insights into the origins of airborne particulate matter. Due to their diverse physicochemical properties and intricate heterogeneous reactions, CA often exhibits temporal and spatial variations. Ground-based and highly time-resolved apportionment methods play a vital role in discerning CA emissions. This study utilized high-time resolution data of total carbon (TC) and black carbon (BC) for CA apportionment in northern Taiwan. The advanced numerical model (TC-BC(λ)), coupled with continuous measurement data, facilitated CA allocation based on optical absorption characteristics, organic or elemental carbon composition, and the distinction between primary and secondary origins. Primary carbonaceous aerosols dominated the monitoring site, accounting for 67.5 % compared to the 32.5 % contribution from secondary forms of CA. The summer season exhibited a maximum increase in secondary organic aerosols (SOA) at 41.5 %. Diurnal variations for primary emissions, such as BCc and primary organic aerosols (POA), showed marked peaks for BCff and POAnon-abs during morning rush hours. In contrast, BCbb and POABrC displayed bimodal peaks with increased concentrations during evening hours. Conversely, SOA exhibited significantly different diurnal trends, with SOABrC peaking late at night due to aqueous phased reactions and a noontime peak of SOAnon-abs observed due to photo-oxidation processes. Furthermore, the study employed backward trajectory analysis and concentration-weighted trajectories (CWTs) to examine the long-range transport of CA, identifying potential sources, origins, and transport patterns of CA components to the receptor site in Taiwan during different seasons.

14.
Biosens Bioelectron ; 259: 116412, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38795498

While there is significant potential for DNA machine-built enzyme-free fluorescence biosensors in the imaging analysis of live biological samples, they persist certain shortcomings. These encompass a deficiency of signal enrichment within a singular interface, uncontrolled premature activation during bio-delivery, and a slow reaction rate due to free nucleic acid collisions. In this contribution, we are committed to resolving the above challenges. Firstly, a single-interface-integrated domino-like driving amplification is constructed. In this conception, a specific target acts as the domino promotor (namely the energy source), initiating a cascading chain reaction that grafts onto a singular interface. Next, an 808 nm near-infrared (NIR) light-excited up-converting luminescence-induced light-activatable biosensing technique is introduced. By locking the target-specific identification segment with a photo-cleavage connector, the up-converted ultraviolet emission can activate target binding in a completely controlled manner. Moreover, a fast reaction rate is achieved by confining nucleic acid collisions within the surface of a DNA wire nano-scaffold, leading to a substantial enhancement in local contact concentration (30.8-fold increase, alongside a 15 times elevation in rate). When a non-coding microRNA (miRNA-221) is positioned as the model low-abundance target for proof-of-concept validation, our intelligent DNA machine demonstrates ultra-high sensitivity (with a limit of detection down to 62.65 fM) and good specificity for this hepatic malignant tumor-associated biomarker in solution detection. Going further, it is worth highlighting that the biosensing system can be employed to carry out high-performance imaging analysis in live bio-samples (ranging from the cellular level to the nude mouse body), thereby propelling the field of DNA machines in disease diagnosis.


Biosensing Techniques , DNA , Infrared Rays , MicroRNAs , Biosensing Techniques/methods , Humans , DNA/chemistry , DNA/genetics , MicroRNAs/analysis , MicroRNAs/genetics , Animals , Mice , Nucleic Acid Amplification Techniques/methods , Optical Imaging/methods , Nanostructures/chemistry
15.
Biomedicines ; 12(5)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38790941

Gliomas are the most common primary brain tumors in adults. Despite multidisciplinary treatment approaches, the survival rates for patients with malignant glioma have only improved marginally, and few prognostic biomarkers have been identified. Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a crucial regulator of cancer metabolism, playing a vital role in cancer cell adaptation to fluctuating energy demands. In this study, the clinicopathological roles of PGC-1α in gliomas were evaluated. Employing immunohistochemistry, cell culture, siRNA transfection, cell viability assays, western blot analyses, and in vitro and in vivo invasion and migration assays, we explored the functions of PGC-1α in glioma progression. High PGC-1α expression was significantly associated with an advanced pathological stage in patients with glioma and with poorer overall survival. The downregulation of PGC-1α inhibited glioma cell proliferation, invasion, and migration and altered the expression of oncogenic markers. These results conclusively demonstrated that PGC-1α plays a critical role in maintaining the malignant phenotype of glioma cells and indicated that targeting PGC-1α could be an effective strategy to curb glioma progression and improve patient survival outcomes.

16.
Sensors (Basel) ; 24(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38793997

CMOS image sensor (CIS) semiconductor products are integral to mobile phones and photographic devices, necessitating ongoing enhancements in efficiency and quality for superior photographic outcomes. The presence of white pixels serves as a crucial metric for assessing CIS product performance, primarily arising from metal impurity contamination during the wafer production process or from defects introduced by the grinding blade process. While immediately addressing metal impurity contamination during production presents challenges, refining the handling of defects attributed to grinding blade processing can notably mitigate white pixel issues in CIS products. This study zeroes in on silicon wafer manufacturers in Taiwan, analyzing white pixel defects reported by customers and leveraging machine learning to pinpoint and predict key factors leading to white pixel defects from grinding blade operations. Such pioneering practical studies are rare. The findings reveal that the classification and regression tree (CART) and random forest (RF) models deliver the most accurate predictions (95.18%) of white pixel defects caused by grinding blade operations in a default parameter setting. The analysis further elucidates critical factors like grinding load and torque, vital for the genesis of white pixel defects. The insights garnered from this study aim to arm operators with proactive measures to diminish the potential for customer complaints.

17.
bioRxiv ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38798468

The mechanisms by which bone marrow stromal cells (BMSCs) maintain multilineage potency in vitro remain elusive. To identify the transcriptional regulatory circuits that contribute to BMSC multipotency, we performed paired single-nucleus multiomics of the expansion of freshly isolated BMSCs and of BMSCs undergoing tri-lineage differentiation. By computationally reconstructing the regulatory programs associated with initial stages of differentiation and early expansion, we identified the TEAD family of transcription factors, which is inhibited by Hippo signaling, as highly active in the BMSC in vitro multipotent state. Pharmacological inhibition of TEAD enhanced BMSC osteogenic and adipogenic differentiation, whereas its activation maintained BMSCs in an undifferentiated state, supporting a model whereby isolation of BMSCs coincides with a TEAD-controlled transcriptional state linked to multipotency. Our study highlights the Hippo pathway as a pivotal regulator of BMSC multipotency, and our regulatory network inferences are a reservoir of testable hypotheses that link transcription factors and their regulons to specific aspects of BMSC behavior.

18.
J Ophthalmol ; 2024: 9943458, 2024.
Article En | MEDLINE | ID: mdl-38800368

Introduction: To evaluate the changes of lens antidilatation, antiedema, and antienzymolysis ability after different concentrations of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC-NHS)-induced collagen cross-linking. Methods: Corneal stromal lenticules (n = 100) obtained from small incision lenticule extraction (SMILE) procedures were divided into 5 groups: no treatment (control); EDC/NHS (5%/2.5%); EDC/NHS(5%/5%); EDC/NHS (10%/5%); riboflavin and ultraviolet-A light (UVA). Collagen crosslinking was induced using EDC-NHS and UVA. Biomechanical assessments including inflation test, enzymatic degradation resistance, and light transmittance were evaluated posttreatment. Results: (1) Lenticule apex displacement ranked: control Group > UVA Group > Group (5%/5%) > Group (5%/2.5%) > Group (10%/5%) (Friedman test, p < 0.0001). (2) Light transmittance was significantly higher in the crosslinked groups versus control, with EDC/NHS superior to UVA riboflavin. After 15 minutes in PBS, light transmittance decreased due to swelling; however, crosslinked groups maintained significantly higher transmittance versus control. (3) Following crosslinking, enzymatic resistance improved significantly, with the EDC-NHS crosslinking group was significantly better than the UVA cross-linking group. Conclusions: EDC/NHS crosslinking enhanced lenticule stiffness, antiedema, and enzymatic resistance and without compromising the transparency of the lens. Moreover, EDC/NHS crosslinking efficacy exceeded UVA riboflavin crosslinking in improving lenticule biomechanical properties.

19.
Plant Cell Rep ; 43(6): 154, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809335

KEY MESSAGE: Integrated omics analyses outline the cellular and metabolic events of hemp plants in response to salt stress and highlight several photosynthesis and energy metabolism related pathways as key regulatory points. Soil salinity affects many physiological processes of plants and leads to crop yield losses worldwide. For hemp, a crop that is valued for multiple aspects, such as its medical compounds, fibre, and seed, a comprehensive understanding of its salt stress responses is a prerequisite for resistance breeding and tailoring its agronomic performance to suit certain industrial applications. Here, we first observed the phenotype of salt-stressed hemp plants and found that under NaCl treatment, hemp plants displayed pronounced growth defects, as indicated by the significantly reduced average height, number of leaves, and chlorophyll content. Next, we conducted comparative proteomics and metabolomics to dissect the complex salt-stress response mechanisms. A total of 314 proteins and 649 metabolites were identified to be differentially behaving upon NaCl treatment. Functional classification and enrichment analysis unravelled that many differential proteins were proteases associated with photosynthesis. Through metabolic pathway enrichment, several energy-related pathways were found to be altered, such as the biosynthesis and degradation of branched-chain amino acids, and our network analysis showed that many ribosomal proteins were involved in these metabolic adaptations. Taken together, for hemp plants, influences on chloroplast function probably represent a major toxic effect of salinity, and modulating several energy-producing pathways possibly through translational regulation is presumably a key protective mechanism against the negative impacts. Our data and analyses provide insights into our understanding of hemp's stress biology and may lay a foundation for future functional genomics studies.


Cannabis , Metabolomics , Plant Proteins , Proteomics , Salinity , Cannabis/metabolism , Cannabis/genetics , Cannabis/physiology , Cannabis/drug effects , Proteomics/methods , Metabolomics/methods , Plant Proteins/metabolism , Plant Proteins/genetics , Salt Stress , Photosynthesis/drug effects , Gene Expression Regulation, Plant/drug effects , Stress, Physiological , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Sodium Chloride/pharmacology , Chlorophyll/metabolism , Metabolome/drug effects , Phenotype
20.
Cell Death Differ ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38714880

Obesity is endemic to many developed countries. Overweight or obesity is associated with an increased risk of developing cancer. Dysfunctional adipose tissue alters cancer cell proliferation and migration; however, whether and how neoplastic epithelial cells communicate with adipose tissue and the underlying mechanism are less clear. BTG3 is a member of the anti-proliferative BTG/Tob family and functions as a tumor suppressor. Here, we demonstrated that BTG3 levels are downregulated in basal cell carcinoma and squamous cell carcinoma compared to normal skin tissue, and Btg3 knockout in mice augmented the development of papilloma in a mouse model of DMBA/TPA-induced skin carcinogenesis. Mechanistically, BTG3-knockout keratinocytes promoted adipocyte differentiation mainly through the release of IL1α, IL10, and CCL4, as a result of elevated NF-κB activity. These adipocytes produced CCL20 and FGF7 in a feedback loop to promote keratinocyte migration. Thus, our findings showcased the role of BTG3 in guarding the interplay between keratinocytes and adjacent adipocytes, and identified the underlying neoplastic molecular mediators that may serve as possible targets in the treatment of skin cancer.

...