Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Mol Ther Nucleic Acids ; 35(2): 102194, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38766528

Cancer-associated fibroblasts (CAFs) play a substantial role in promoting cancer cell motility, drug resistance, angiogenesis, and metastasis; therefore, extensive research has been conducted to determine their mode of activation. We aimed to identify whether miRNA-200 (miR-200), a widely recognized suppressor of epithelial-mesenchymal transition, prevents CAFs from promoting cancer progression. Overexpression of miR-200 prevented CAFs from promoting lung cancer cell migration, invasion, tumorigenicity, and metastasis. Additionally, miR-200 suppressed the ability of CAFs to recruit and polarize macrophages toward the M2 phenotype, as well as the migration and tube formation of vascular endothelial cells. NRP2, a co-receptor of vascular endothelial growth factor receptor (VEGFR), was confirmed to be a target of miR-200, which mediates the functional activity of miR-200 in CAFs. NRP2-VEGFR signaling facilitates the secretion of VEGF-D and pleiotrophin from CAFs, leading to the activation of cancer cell migration and invasion. These findings suggest that miR-200 remodels CAFs to impede cancer progression and metastasis and that miR-200 and NRP2 are potential therapeutic targets in the treatment of lung cancer.

2.
Cancers (Basel) ; 14(14)2022 Jul 18.
Article En | MEDLINE | ID: mdl-35884546

Cancer-associated fibroblasts (CAFs) reside within the tumor microenvironment, facilitating cancer progression and metastasis via direct and indirect interactions with cancer cells and other stromal cell types. CAFs are composed of heterogeneous subpopulations of activated fibroblasts, including myofibroblastic, inflammatory, and immunosuppressive CAFs. In this study, we sought to identify subpopulations of CAFs isolated from human lung adenocarcinomas and describe their transcriptomic and functional characteristics through single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatics analyses. Cell trajectory analysis of combined total and THY1 + CAFs revealed two branching points with five distinct branches. Based on Gene Ontology analysis, we denoted Branch 1 as "immunosuppressive", Branch 2 as "neoantigen presenting", Branch 4 as "myofibroblastic", and Branch 5 as "proliferative" CAFs. We selected representative branch-specific markers and measured their expression levels in total and THY1 + CAFs. We also investigated the effects of these markers on CAF activity under coculture with lung cancer cells. This study describes novel subpopulations of CAFs in lung adenocarcinoma, highlighting their potential value as therapeutic targets.

3.
Cancer Lett ; 533: 215601, 2022 05 01.
Article En | MEDLINE | ID: mdl-35176421

Numerous long non-coding RNAs (lncRNAs) are differentially expressed in cancer cells compared with normal cells and are involved in tumor progression and metastasis. Metastasis is initiated by the epithelial-to-mesenchymal transition (EMT) process, which can also be regulated by lncRNAs. Given that ZEB1 is an important transcription factor inducing EMT, we screened lncRNAs controlled by ZEB1 using RNA sequencing in murine lung adenocarcinoma cells. Among several lncRNAs regulated by ZEB1, we selected lnc-Nr2f1. Lnc-Nr2f1 is upregulated by ZEB1 and TGF-ß, a potent EMT signal. Growth, migration, and invasion of lung adenocarcinoma cells were decreased after lnc-Nr2f1 knockdown and increased after lnc-Nr2f1 overexpression. Interestingly, lnc-Nr2f1 was transcriptionally controlled by NR2F1, a transcription factor that is transcribed in the antisense direction. NR2F1 was also upregulated and positively correlated with ZEB1, forming a ZEB1/NR2F1/lnc-Nr2f1 axis. Lnc-Nr2f1, in turn, promoted Twist2 transcription through direct binding to its genomic DNA region. Collectively, lnc-Nr2f1 was upregulated by ZEB1 and NR2F1, and promoted migration and invasion of lung adenocarcinoma cells via TWIST2 regulation.


Adenocarcinoma , RNA, Long Noncoding , Adenocarcinoma/genetics , Animals , COUP Transcription Factor I/genetics , COUP Transcription Factor I/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung/metabolism , Mice , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
...