Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702886

ABSTRACT

In the rapidly evolving landscape of medical research, the emergence of RNA-based therapeutics is paradigm shifting. It is mainly driven by the molecular adaptability and capacity to provide precision in targeting. The coronavirus disease 2019 pandemic crisis underscored the effectiveness of the mRNA therapeutic development platform and brought it to the forefront of RNA-based interventions. These RNA-based therapeutic approaches can reshape gene expression, manipulate cellular functions, and correct the aberrant molecular processes underlying various diseases. The new technologies hold the potential to engineer and deliver tailored therapeutic agents to tackle genetic disorders, cancers, and infectious diseases in a highly personalized and precisely tuned manner. The review discusses the most recent advancements in the field of mRNA therapeutics for cancer treatment, with a focus on the features of the most utilized RNA-based therapeutic interventions, current pre-clinical and clinical developments, and the remaining challenges in delivery strategies, effectiveness, and safety considerations.

2.
Exp Hematol ; 130: 104135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072134

ABSTRACT

Epigenetic regulators, such as the polycomb repressive complex 2 (PRC2), play a critical role in both normal development and carcinogenesis. Mutations and functional dysregulation of PRC2 complex components, such as EZH2, are implicated in various forms of cancer and associated with poor prognosis. This study investigated the epigenetic vulnerabilities of acute myeloid leukemia (AML) and myelodysplastic/myeloproliferative disorders (MDS/MPN) by performing a chemical probe screen in patient cells. Paradoxically, we observed increased sensitivity to EZH2 and embryonic ectoderm development (EED) inhibitors in AML and MDS/MPN patient cells harboring EZH2 mutations. Expression analysis indicated that EZH2 inhibition elicited upregulation of pathways responsible for cell death and growth arrest, specifically in patient cells with mutant EZH2. The identified EZH2 mutations had drastically reduced catalytic activity, resulting in lower cellular H3K27me3 levels, and were associated with decreased EZH2 and PRC2 component EED protein levels. Overall, this study provides an important understanding of the role of EZH2 dysregulation in blood cancers and may indicate disease etiology for these poor prognosis AML and MDS/MPN cases.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Leukemia, Myeloid, Acute , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Leukemia, Myeloid, Acute/genetics , Epigenesis, Genetic , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...