Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Cell Rep Med ; 4(3): 100957, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36889319

ABSTRACT

Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl- extrusion, a process that is facilitated by the neuronal specific K+/Cl- co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl- accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury.


Subject(s)
Status Epilepticus , Symporters , Mice , Animals , Benzodiazepines/pharmacology , Benzodiazepines/therapeutic use , Status Epilepticus/drug therapy , Seizures/metabolism , gamma-Aminobutyric Acid/metabolism , Symporters/metabolism
2.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G250-G261, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36749569

ABSTRACT

The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.


Subject(s)
Inflammatory Bowel Diseases , Visceral Pain , Humans , Interleukin-13/pharmacology , Nociceptors , p38 Mitogen-Activated Protein Kinases , Capsaicin/pharmacology , Colon/innervation
3.
Gene Ther ; 30(1-2): 132-141, 2023 02.
Article in English | MEDLINE | ID: mdl-35637286

ABSTRACT

Challenges in obtaining efficient transduction of brain and spinal cord following systemic AAV delivery have led to alternative administration routes being used in clinical trials that directly infuse the virus into the CNS. However, data comparing different direct AAV injections into the brain remain limited making it difficult to choose optimal routes. Here we tested both AAV9-egfp and AAV9-fLuc delivery via intrastriatal (IST), intracisterna magna (ICM) and lumbar intrathecal (LIT) routes in adult rats and assessed vector distribution and transduction in brain, spinal cord and peripheral tissues. We find that IST infusion leads to robust transgene expression in the striatum, thalamus and cortex with lower peripheral tissue transduction and anti-AAV9 capsid titers compared to ICM or LIT. ICM delivery provided strong GFP and luciferase expression across more brain regions than the other routes and similar expression in the spinal cord to LIT injections, which itself largely failed to transduce the rat brain. Our data highlight the strengths and weaknesses of each direct CNS delivery route which will help with future clinical targeting.


Subject(s)
Gene Transfer Techniques , Spinal Cord , Rats , Animals , Transduction, Genetic , Spinal Cord/metabolism , Brain/metabolism , Transgenes , Genetic Vectors/genetics , Dependovirus/genetics , Dependovirus/metabolism
4.
J Physiol ; 600(16): 3819-3836, 2022 08.
Article in English | MEDLINE | ID: mdl-35775903

ABSTRACT

Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα-triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1-evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα-mediated increases in intracellular [Ca2+ ] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre-treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα-induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease. KEY POINTS: The pro-inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα-mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease.


Subject(s)
Nociceptors , Visceral Pain , Animals , Capsaicin/pharmacology , Ganglia, Spinal/metabolism , Mice , Nociceptors/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/pharmacology , TRPV Cation Channels/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Visceral Pain/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Cephalalgia ; 41(3): 305-317, 2021 03.
Article in English | MEDLINE | ID: mdl-32985222

ABSTRACT

AIM: Development and characterization of a novel injury-free preclinical model of migraine-like pain allowing mechanistic assessment of both acute and preventive treatments. METHODS: A "two-hit" hyperalgesic priming strategy was used to induce vulnerability to a normally subthreshold challenge with umbellulone, a transient receptor potential ankyrin 1 (TRPA1) activator, in uninjured female and male C57BL/6 mice. Priming (i.e. the first hit) was induced by three consecutive daily episodes of restraint stress; repeated umbellulone was also evaluated for potential priming effects. Sixteen days after the first restraint stress, mice received inhalational umbellulone (i.e. the second hit) to elicit migraine-like pain. Medications currently used for acute or preventive migraine therapy including propranolol (a beta blocker) and sumatriptan (5HT1B/D agonist), as well as olcegepant, an experimental calcitonin gene related peptide (CGRP) receptor antagonist and nor-Binaltorphimine (nor-BNI), an experimental long-acting kappa opioid receptor (KOR) antagonist, were investigated for their efficacy to block priming and prevent or reverse umbellulone-induced allodynia in primed animals. To assess migraine-like pain, cutaneous allodynia was determined by responses to periorbital or hindpaw probing with von Frey filaments. RESULTS: Repeated restraint stress, but not umbellulone exposure, produced transient cutaneous allodynia that resolved within 16 d. Restraint stress produced long-lasting priming that persisted beyond 16 d, as demonstrated by reinstatement of cutaneous allodynia following inhalational umbellulone challenge. Pretreatment with propranolol or nor-BNI prior to restraint stress prevented both transient cutaneous allodynia and priming, demonstrated by a lack of umbellulone-induced cutaneous allodynia. Following establishment of restraint stress priming, olcegepant, but not propranolol or nor-BNI, prevented umbellulone-induced cutaneous allodynia. When administered 1 h after umbellulone, sumatriptan, but not olcegepant, reversed umbellulone-induced cutaneous allodynia in restraint stress-primed rats. CONCLUSION: We have developed a novel injury-free model with translational relevance that can be used to study mechanisms relevant to migraine-like pain and to evaluate novel acute or preventive treatments. Restraint stress priming induced a state of vulnerability to a subthreshold stimulus that has been referred to as "latent sensitization". The development of latent sensitization could be prevented by blockade of stress pathways with propranolol or with a kappa opioid receptor antagonist. Following establishment of latent sensitization, subthreshold stimulation with umbellulone reinstated cutaneous allodynia, likely from activation of meningeal TRPA1-expressing nociceptors. Accordingly, in restraint stress-primed animals, sumatriptan reversed umbellulone-induced cutaneous allodynia, supporting peripheral sites of action, while propranolol and nor-BNI were not effective. Surprisingly, olcegepant was effective in mice with latent sensitization when given prior to, but not after, umbellulone challenge, suggesting time-dependent contributions of calcitonin gene-related peptide receptor signaling in promoting migraine-like pain in this model. Activation of the calcitonin gene-related peptide receptor participates in initiating, but has a more limited role in maintaining, pain responses, supporting the efficacy of small molecule calcitonin gene-related peptide antagonists as preventive medications. Additionally, the effectiveness of sumatriptan in reversal of established pain thus suggests modulation of additional, non-calcitonin gene-related peptide receptor-mediated nociceptive mechanisms. Kappa opioid receptor antagonists may represent a novel preventive therapy for stress-related migraine.


Subject(s)
Migraine Disorders , Pain , Animals , Calcitonin Gene-Related Peptide , Disease Models, Animal , Female , Hyperalgesia/chemically induced , Hyperalgesia/prevention & control , Male , Mice , Mice, Inbred C57BL , Migraine Disorders/prevention & control , Narcotic Antagonists , Propranolol , Rats , Rats, Sprague-Dawley , Receptors, Calcitonin Gene-Related Peptide , Receptors, Opioid, kappa , Sumatriptan
6.
Cephalalgia ; 40(14): 1535-1550, 2020 12.
Article in English | MEDLINE | ID: mdl-33131305

ABSTRACT

AIM: Migraine pain is thought to result from activation of meningeal nociceptors that might involve dural mast cell degranulation and release of proteases and pronociceptive mediators. Tryptase, the most abundant dural mast cell protease, has been demonstrated to stimulate dural mast cells, as well as trigeminal nociceptors by activating the protease activated receptor 2. Mast cell or neuronal protease activated receptors 2 may therefore represent a novel target for migraine treatment. In this study, we characterized and evaluated a novel protease activated receptor 2 monoclonal antibody as a preventive anti-migraine pain therapy in preclinical models. METHODS: Flow cytometry, immunocytochemistry, calcium imaging, Homogeneous Time Resolved Technology (HTRF) epitope competition assay and serum pharmacokinetic (PK) assay in rats were performed to confirm the activity, specificity and in vivo stability of PAR650097, a novel anti- protease activated receptor 2 monoclonal antibody. In vivo assessment was performed in female C57BL/6J mice by evaluation of PAR650097 in preventing cutaneous allodynia elicited by (a) supradural injection of the protease activated receptor 2 agonist, Ser-Leu-Ile-Gly-Arg-Leu-amide trifluoroacetate (SLIGRL), or calcitonin gene-related (CGRP) peptide, and (b) induction of latent sensitization by priming with three daily episodes of restraint stress followed by challenge with a subthreshold inhalational exposure to umbellulone (UMB), a transient receptor potential ankyrin 1 (TRPA1) agonist. PAR650097 was administered as a pretreatment prior to the first restraint stress, umbellulone exposure, SLIGRL or calcitonin gene-related peptide injection. Additionally, fremanezumab, a calcitonin gene-related peptide antibody was administered as pre-treatment prior to supradural administration of calcitonin gene-related peptide or SLIGRL. RESULTS: In vitro, PAR650097 demonstrated rapid interaction with protease activated receptor 2, enabling it to fully inhibit protease-induced protease activated receptor 2 activation, in human and mouse cells, with high potency. Furthermore, PAR650097 was highly selective for protease activated receptor 2, demonstrating no affinity for protease activated receptor 1 protein and no functional effect on the activation of cellular protease activated receptor 1 with thrombin. In addition, PAR650097 had an acceptable PK profile, compatible with testing the effects of selective protease activated receptor 2 inhibition in vivo. In vivo, PAR650097 blocked cutaneous allodynia induced by either supradural SLIGRL or calcitonin gene-related peptide. Fremanezumab abolished cutaneous allodynia induced by supradural CGRP, and partially attenuated cutaneous allodynia induced by SLIGRL. Administration of PAR650097, before the first restraint stress episode, did not prevent the acute stress-induced cutaneous allodynia or restraint stress priming revealed by cutaneous allodynia induced by inhalational umbellulone. In contrast, PAR650097 prevented expression of cutaneous allodynia when given before the umbellulone challenge in restraint stress-primed animals. CONCLUSION: PAR650097 specifically inhibits endogenously expressed protease activated receptor 2 in human and mouse cells with high potency. This antibody has an acceptable PK profile in rodents and effectively blocked SLIGR-induced cutaneous allodynia. PAR650097 additionally prevented cutaneous allodynia induced by supradural calcitonin gene-related peptide, indicating that the protease activated receptor 2 receptor is a downstream consequence of calcitonin gene-related peptide actions. Fremanezumab effectively blocked calcitonin gene-related peptide-induced cutaneous allodynia and only partially reduced cutaneous allodynia induced by a protease activated receptor 2 activator, suggesting both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine pain. While PAR650097 did not prevent stress-induced cutaneous allodynia or priming, it effectively prevented cutaneous allodynia induced by a TRPA1 agonist in animals with latent sensitization. Activation of protease activated receptor 2, therefore, contributes to both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine-like pain. Therapeutic targeting of protease activated receptor 2 receptors may represent an anti-migraine pain strategy with a potentially broad efficacy profile.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Animals , Antibodies, Monoclonal , Female , Hyperalgesia/prevention & control , Mice , Mice, Inbred C57BL , Migraine Disorders/drug therapy , Migraine Disorders/prevention & control , Pain , Peptide Hydrolases , Rats , Receptor, PAR-1 , Receptor, PAR-2
7.
Eur J Epidemiol ; 35(6): 601-611, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32328990

ABSTRACT

The Dementias Platform UK Data Portal is a data repository facilitating access to data for 3 370 929 individuals in 42 cohorts. The Data Portal is an end-to-end data management solution providing a secure, fully auditable, remote access environment for the analysis of cohort data. All projects utilising the data are by default collaborations with the cohort research teams generating the data. The Data Portal uses UK Secure eResearch Platform infrastructure to provide three core utilities: data discovery, access, and analysis. These are delivered using a 7 layered architecture comprising: data ingestion, data curation, platform interoperability, data discovery, access brokerage, data analysis and knowledge preservation. Automated, streamlined, and standardised procedures reduce the administrative burden for all stakeholders, particularly for requests involving multiple independent datasets, where a single request may be forwarded to multiple data controllers. Researchers are provided with their own secure 'lab' using VMware which is accessed using two factor authentication. Over the last 2 years, 160 project proposals involving 579 individual cohort data access requests were received. These were received from 268 applicants spanning 72 institutions (56 academic, 13 commercial, 3 government) in 16 countries with 84 requests involving multiple cohorts. Projects are varied including multi-modal, machine learning, and Mendelian randomisation analyses. Data access is usually free at point of use although a small number of cohorts require a data access fee.


Subject(s)
Data Management , Database Management Systems , Dementia , Biomedical Research , Cohort Studies , Datasets as Topic , Humans , United Kingdom
8.
Neurobiol Dis ; 132: 104582, 2019 12.
Article in English | MEDLINE | ID: mdl-31445162

ABSTRACT

There are no approved drug therapies that can prevent or slow the progression of Parkinson's disease (PD). Accumulation and aggregation of α-synuclein protein is observed throughout the nervous system in PD. α-Synuclein is a core component of Lewy bodies and neurites that neuropathologically define PD, suggesting that α-synuclein may be a key causative agent in PD. Recent experimental data suggest that PD progression may arise due to spreading of pathological forms of extracellular α-synuclein throughout the brain via a cellular release, uptake and seeding mechanism. We have developed a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. MEDI1341 binds both monomeric and aggregated forms of α-synuclein. In vitro, MEDI1341 blocks cell-to-cell transmission of pathologically relevant α-synuclein preformed fibrils (pffs). After intravenous injection into rats and cynomolgus monkeys, MEDI1341 rapidly enters the central nervous system and lowers free extracellular α-synuclein levels in the interstitial fluid (ISF) and cerebrospinal fluid (CSF) compartments. Using a novel lentiviral-based in vivo mouse model of α-synuclein spreading in the brain, we show that treatment with MEDI1341 significantly reduces α-synuclein accumulation and propagation along axons. In this same model, we demonstrate that an effector-null version of the antibody was equally as effective as one with effector function. MEDI1341 is now in Phase 1 human clinical trial testing as a novel treatment for α-synucleinopathies including PD with the aim to slow or halt disease progression.


Subject(s)
Antibodies, Monoclonal/pharmacology , Brain/drug effects , alpha-Synuclein/antagonists & inhibitors , Animals , Antibody Specificity , Humans , Macaca fascicularis , Mice , Rats
9.
Pain ; 160(9): 1989-2003, 2019 09.
Article in English | MEDLINE | ID: mdl-31045747

ABSTRACT

P2X4 is a ligand-gated ion channel implicated in neuropathic pain. Drug discovery efforts targeting P2X4 have been unsuccessful largely because of the difficulty in engineering specificity and selectivity. Here, we describe for the first time the generation of a panel of diverse monoclonal antibodies (mAbs) to human and mouse P2X4, capable of both positive and negative modulation of channel function. The affinity-optimised anti-P2X4 mAb IgG#151-LO showed exquisite selectivity for human P2X4 and induced potent and complete block of P2X4 currents. Site-directed mutagenesis of P2X4 revealed the head domain as a key interaction site for inhibitory mAbs. Inhibition of spinal P2X4 either by intrathecal delivery of an anti-P2X4 mAb or by systemic delivery of an anti-P2X4 bispecific mAb with enhanced blood-spinal cord barrier permeability produced long-lasting (>7 days) analgesia in a mouse model of neuropathic pain. We therefore propose that inhibitory mAbs binding the head domain of P2X4 have therapeutic potential for the treatment of neuropathic pain.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Neuralgia/metabolism , Neuralgia/prevention & control , Receptors, Purinergic P2X4/metabolism , Animals , Cells, Cultured , Female , HEK293 Cells , Humans , Injections, Spinal , Mice , Mice, Inbred C57BL , Protein Binding/physiology , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/metabolism , Rats , Rats, Sprague-Dawley
10.
Ann Clin Transl Neurol ; 6(3): 554-574, 2019 03.
Article in English | MEDLINE | ID: mdl-30911579

ABSTRACT

Objective: Amyloid-beta oligomers (Aßo) trigger the development of Alzheimer's disease (AD) pathophysiology. Cellular prion protein (PrPC) initiates synaptic damage as a high affinity receptor for Aßo. Here, we evaluated the preclinical therapeutic efficacy of a fully human monoclonal antibody against PrPC. This AZ59 antibody selectively targets the Aßo binding site in the amino-terminal unstructured domain of PrPC to avoid any potential risk of direct toxicity. Methods: Potency of AZ59 was evaluated by binding to PrPC, blockade of Aßo interaction and interruption of Aßo signaling. AZ59 was administered to mice by weekly intraperitoneal dosing and brain antibody measured. APP/PS1 transgenic mice were treated with AZ59 and assessed by memory tests, by brain biochemistry and by histochemistry for Aß, gliosis and synaptic density. Results: AZ59 binds PrPC with 100 pmol/L affinity and blocks human brain Aßo binding to PrPC, as well as prevents synaptotoxic signaling. Weekly i.p. dosing of 20 mg/kg AZ59 in a murine form achieves trough brain antibody levels greater than 10 nmol/L. Aged symptomatic APP/PS1 transgenic mice treated with AZ59 for 5-7 weeks show a full rescue of behavioral and synaptic loss phenotypes. This recovery occurs without clearance of plaque pathology or elimination of gliosis. AZ59 treatment also normalizes synaptic signaling abnormalities in transgenic brain. These benefits are dose-dependent and persist for at least 1 month after the last dose. Interpretation: Preclinical data demonstrate that systemic AZ59 therapy rescues central synapses and memory function from transgenic Alzheimer's disease pathology, supporting a disease-modifying therapeutic potential.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Antibodies, Monoclonal/therapeutic use , PrPC Proteins/antagonists & inhibitors , PrPC Proteins/immunology , Amyloid beta-Peptides/metabolism , Animals , Binding Sites , Brain/pathology , COS Cells , Chlorocebus aethiops , Cognition , Disease Models, Animal , Humans , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction , Synapses/pathology
11.
BMJ Open ; 9(3): e024498, 2019 03 23.
Article in English | MEDLINE | ID: mdl-30904851

ABSTRACT

INTRODUCTION: Recent failures of potential novel therapeutics for Alzheimer's disease (AD) have prompted a drive towards clinical studies in prodromal or preclinical states. However, carrying out clinical trials in early disease stages is extremely challenging-a key reason being the unfeasibility of using classical outcome measures of dementia trials (eg, conversion to dementia) and the lack of validated surrogate measures so early in the disease process. The Deep and Frequent Phenotyping (DFP) study aims to resolve this issue by identifying a set of markers acting as indicators of disease progression in the prodromal phase of disease that could be used as indicative outcome measures in proof-of-concept trials. METHODS AND ANALYSIS: The DFP study is a repeated measures observational study where participants will be recruited through existing parent cohorts, research interested lists/databases, advertisements and memory clinics. Repeated measures of both established (cognition, positron emission tomography (PET) imaging or cerebrospinal fluid (CSF) markers of pathology, structural MRI markers of neurodegeneration) and experimental modalities (functional MRI, magnetoencephalography and/or electroencephalography, gait measurement, ophthalmological and continuous smartphone-based cognitive and other assessments together with experimental CSF, blood, tear and saliva biomarkers) will be performed. We will be recruiting male and female participants aged >60 years with prodromal AD, defined as absence of dementia but with evidence of cognitive impairment together with AD pathology as assessed using PET imaging or CSF biomarkers. Control participants without evidence of AD pathology will be included at a 1:4 ratio. ETHICS AND DISSEMINATION: The study gained favourable ethical opinion from the South Central-Oxford B NHS Research Ethics Committee (REC reference 17/SC/0315; approved on 18 August 2017; amendment 13 February 2018). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly.


Subject(s)
Alzheimer Disease/diagnosis , Cognition/physiology , Disease Progression , Phenotype , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/analysis , Biomarkers/analysis , Case-Control Studies , Female , Gait Analysis/methods , Humans , Magnetic Resonance Imaging , Male , Mental Status and Dementia Tests , Multicenter Studies as Topic , Neuroimaging , Observational Studies as Topic , Positron Emission Tomography Computed Tomography
12.
Arthritis Rheumatol ; 71(7): 1078-1088, 2019 07.
Article in English | MEDLINE | ID: mdl-30638309

ABSTRACT

OBJECTIVE: Mechanisms responsible for osteoarthritic (OA) pain remain poorly understood, and current analgesic therapies are often insufficient. This study was undertaken to characterize and pharmacologically test the pain phenotype of a noninvasive mechanical joint loading model of OA, thus providing an alternative murine model for OA pain. METHODS: The right knees of 12-week-old male C57BL/6 mice were loaded at 9N or 11N (40 cycles, 3 times per week for 2 weeks). Behavioral measurements of limb disuse and mechanical and thermal hypersensitivity were acquired before mechanical joint loading and monitored for 6 weeks postloading. The severity of articular cartilage lesions was determined postmortem with the Osteoarthritis Research Society International scoring system. To assess efficacy of various treatments for pain, 9N-loaded mice were treated for 4 weeks with diclofenac (10 mg/kg), gabapentin (100 mg/kg), or anti-nerve growth factor (anti-NGF) (3 mg/kg). RESULTS: Mechanical hypersensitivity and weight bearing worsened significantly in 9N-loaded mice (n = 8) and 11N-loaded mice (n = 8) 2 weeks postloading, compared to baseline values and nonloaded controls. Maximum OA scores of ipsilateral knees confirmed increased cartilage lesions in 9N-loaded mice (mean ± SEM 2.8 ± 0.2; P < 0.001) and 11N-loaded mice (5.3 ± 0.3; P < 0.001), compared to nonloaded controls (1.0 ± 0.0). Gabapentin and diclofenac restored pain behaviors to baseline values after 2 weeks of daily treatment, and gabapentin was more effective than diclofenac. A single injection of anti-NGF alleviated nociception 2 days after treatment and remained effective for 2 weeks, with a second dose inducing stronger and more prolonged analgesia. CONCLUSION: Our findings show that mechanical joint loading induces OA lesions in mice and a robust pain phenotype that can be reversed using analgesics known to alleviate OA pain in patients. This establishes the use of mechanical joint loading as an alternative model for the study of OA pain.


Subject(s)
Arthralgia/physiopathology , Cartilage, Articular/pathology , Hyperesthesia/physiopathology , Osteoarthritis, Knee/physiopathology , Weight-Bearing , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthralgia/pathology , Behavior, Animal , Diclofenac/pharmacology , Disease Models, Animal , Gabapentin/pharmacology , Mice , Mice, Inbred C57BL , Nerve Growth Factor/antagonists & inhibitors , Osteoarthritis, Knee/pathology
13.
Bioorg Med Chem Lett ; 28(10): 1892-1896, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29636218
14.
Pain ; 159(3): 550-559, 2018 03.
Article in English | MEDLINE | ID: mdl-29351125

ABSTRACT

With less than 50% of patients responding to the current standard of care and poor efficacy and selectivity of current treatments, neuropathic pain continues to be an area of considerable unmet medical need. Biological therapeutics such as monoclonal antibodies (mAbs) provide better intrinsic selectivity; however, delivery to the central nervous system (CNS) remains a challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well described in inflammation-induced pain, and early-phase clinical trials evaluating its antagonism have exemplified its importance as a peripheral pain target. Here, we investigate the role of this cytokine in a murine model of traumatic nerve injury and show that deletion of the GM-CSF receptor or treatment with an antagonizing mAb alleviates pain. We also demonstrate enhanced analgesic efficacy using an engineered construct that has greater capacity to penetrate the CNS. Despite observing GM-CSF receptor expression in microglia and astrocytes, the gliosis response in the dorsal horn was not altered in nerve injured knockout mice compared with wild-type littermate controls as evaluated by ionized calcium binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein, respectively. Functional analysis of glial cells revealed that pretreatment with GM-CSF potentiated lipopolysaccharide-induced release of proinflammatory cytokines. In summary, our data indicate that GM-CSF is a proinflammatory cytokine that contributes to nociceptive signalling through driving spinal glial cell secretion of proinflammatory mediators. In addition, we report a successful approach to accessing CNS pain targets, providing promise for central compartment delivery of analgesics.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Analgesics/therapeutic use , Animals , Antibodies/therapeutic use , Brain/cytology , CD11b Antigen/metabolism , Calcium-Binding Proteins/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Neuralgia/pathology , Neuroglia/drug effects , Signal Transduction/drug effects
15.
EMBO Mol Med ; 9(10): 1366-1378, 2017 10.
Article in English | MEDLINE | ID: mdl-28855301

ABSTRACT

We have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding. Peptidomimetic protease inhibitors highlighted a possible cleavage site, and mass spectrometry confirmed that shedding occurred predominantly at the H157-S158 peptide bond for both wild-type and H157Y human TREM2 and for the wild-type murine orthologue. Crucially, we also show that the Alzheimer's disease-associated H157Y TREM2 variant was shed more rapidly than wild type from HEK293 cells, possibly by a novel, batimastat- and ADAM10-siRNA-independent, sheddase activity. These insights offer new therapeutic targets for modulating the innate immune response in Alzheimer's and other neurological diseases.


Subject(s)
Alzheimer Disease/genetics , Membrane Glycoproteins/metabolism , Proteolysis , Receptors, Immunologic/metabolism , ADAM10 Protein/genetics , ADAM10 Protein/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Animals, Newborn , Culture Media, Conditioned , HEK293 Cells , Humans , Ketocholesterols/pharmacology , Macrophages/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Immunologic/genetics
16.
Pain ; 158(7): 1254-1263, 2017 07.
Article in English | MEDLINE | ID: mdl-28333699

ABSTRACT

Little is known about local and systemic biomarkers in relation to synovitis and pain in end-stage osteoarthritis (OA) patients. We investigated the associations between the novel extracellular matrix biomarker, C1M, and local and systemic interleukin 6 (IL-6) with synovitis and pain. Serum C1M, plasma, and synovial fluid IL-6 (p-IL-6, sf-IL-6) were measured in 104 end-stage knee OA patients. Contrast-enhanced magnetic resonance imaging was used to semiquantitatively assess an 11-point synovitis score; pain was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and the Neuropathic Pain Questionnaire (NPQ). Linear regression was used to investigate associations between biomarkers and synovitis, and biomarkers and pain while controlling for age, sex, and body mass index. We also tested whether associations between biomarkers and pain were confounded by synovitis. We found sf-IL-6 was associated with synovitis in the parapatellar subregion (B = 0.006; 95% confidence interval [CI] 0.003-0.010), and no association between p-IL-6 and synovitis. We also observed an association between C1M and synovitis in the periligamentous subregion (B = 0.013; 95% CI 0.003-0.023). Furthermore, sf-IL-6, but not p-IL-6, was significantly associated with pain, WOMAC (B = 0.022; 95% CI 0.004-0.040), and NPQ (B = 0.043; 95% CI 0.005-0.082). There was no association between C1M and WOMAC pain, but we did find an association between C1M and NPQ (B = 0.229; 95% CI 0.036-0.422). Lastly, synovitis explained both biomarker-NPQ associations, but not the biomarker-WOMAC association. These results suggest that C1M and IL-6 are associated with synovitis and pain, and synovitis is an important confounding variable when studying biomarkers and neuropathic features in OA patients.


Subject(s)
Extracellular Matrix/metabolism , Interleukin-6/metabolism , Knee Joint/metabolism , Osteoarthritis, Knee/metabolism , Synovial Fluid/metabolism , Aged , Biomarkers/metabolism , Female , Humans , Interleukin-6/blood , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Osteoarthritis, Knee/diagnostic imaging , Pain Measurement , Synovitis/diagnostic imaging , Synovitis/metabolism
17.
Pain ; 158(4): 660-668, 2017 04.
Article in English | MEDLINE | ID: mdl-28009628

ABSTRACT

Neuropathic pain is a major unmet medical need, with only 30% to 35% of patients responding to the current standard of care. The discovery and development of novel therapeutics to address this unmet need have been hampered by poor target engagement, the selectivity of novel molecules, and limited access to the relevant compartments. Biological therapeutics, either monoclonal antibodies (mAbs) or peptides, offer a solution to the challenge of specificity as the intrinsic selectivity of these kinds of molecules is significantly higher than traditional medicinal chemistry-derived approaches. The interleukin-1 receptor system within the spinal cord has been implicated in the amplification of pain signals, and its central antagonism provides relief of neuropathic pain. Targeting the IL-1 system in the spinal cord with biological drugs, however, raises the even greater challenge of delivery to the central compartment. Targeting the transferrin receptor with monoclonal antibodies has proved successful in traversing the endothelial cell-derived blood-brain barrier and delivering proteins to the central nervous system. In this study, we describe a novel construct exemplifying an engineered solution to overcome these challenges. We have generated a novel anti-transferrin receptor-interleukin-1 receptor antagonist fusion that transports to the central nervous system and delivers efficacy in a model of nerve ligation-induced hypersensitivity. Approaches such as these provide promise for novel and selective analgesics that target the central compartment.


Subject(s)
Antibodies/therapeutic use , Central Nervous System/drug effects , Hyperalgesia/etiology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Receptors, Transferrin/immunology , Sciatica/complications , Animals , Antibodies/pharmacology , Central Nervous System/physiology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Recombinant Fusion Proteins/pharmacology , Time Factors
18.
Eur Urol ; 70(2): 283-90, 2016 08.
Article in English | MEDLINE | ID: mdl-26965559

ABSTRACT

BACKGROUND: Bladder pain syndrome (BPS) pathology is poorly understood. Treatment strategies are empirical, with limited efficacy, and affected patients have diminished quality of life. OBJECTIVE: We examined the hypothesis that inflammatory mediators within the bladder contribute to BPS pathology. DESIGN, SETTING, AND PARTICIPANTS: Fifteen women with BPS and 15 women with stress urinary incontinence without bladder pain were recruited from Cork University Maternity Hospital from October 2011 to October 2012. During cystoscopy, 5-mm bladder biopsies were taken and processed for gene expression analysis. The effect of the identified genes was tested in laboratory animals. OUTCOME MEASURES AND STATISTICAL ANALYSIS: We studied the expression of 96 inflammation-related genes in diseased and healthy bladders. We measured the correlation between genes and patient clinical profiles using the Pearson correlation coefficient. RESULTS AND LIMITATIONS: Analysis revealed 15 differentially expressed genes, confirmed in a replication study. FGF7 and CCL21 correlated significantly with clinical outcomes. Intravesical CCL21 instillation in rats caused increased bladder excitability and increased c-fos activity in spinal cord neurons. CCL21 atypical receptor knockout mice showed significantly more c-fos upon bladder stimulation with CCL21 than wild-type littermates. There was no change in FGF7-treated animals. The variability in patient samples presented as the main limitation. We used principal component analysis to identify similarities within the patient group. CONCLUSIONS: Our study identified two biologically relevant inflammatory mediators in BPS and demonstrated an increase in nociceptive signalling with CCL21. Manipulation of this ligand is a potential new therapeutic strategy for BPS. PATIENT SUMMARY: We compared gene expression in bladder biopsies of patients with bladder pain syndrome (BPS) and controls without pain and identified two genes that were increased in BPS patients and correlated with clinical profiles. We tested the effect of these genes in laboratory animals, confirming their role in bladder pain. Manipulating these genes in BPS is a potential treatment strategy.


Subject(s)
Chemokine CCL21/genetics , Cystitis, Interstitial , Pain , Urinary Bladder , Adult , Animals , Cystitis, Interstitial/diagnosis , Cystitis, Interstitial/genetics , Disease Models, Animal , Female , Fibroblast Growth Factor 7/genetics , Humans , Inflammation Mediators/analysis , Pain/diagnosis , Pain/etiology , Pain/immunology , Rats , Signal Transduction , Statistics as Topic , Symptom Assessment , Urinary Bladder/pathology , Urinary Bladder/physiopathology
19.
Neurosci Lett ; 545: 23-8, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23603259

ABSTRACT

The expression of artemin (ARTN), a glial cell line-derived neurotrophic factor (GDNF) family ligand, increases in pre-clinical models of nociception and recent evidence suggests this growth factor may play a causative role in inflammatory pain mechanisms. The aim of this study was to demonstrate functional inhibition of ARTN with monoclonal antibodies and to determine whether ARTN neutralisation could reverse inflammatory pain in mice. We show that monoclonal antibodies with high affinity to ARTN, completely inhibit ARTN-induced Ret and ERK activation in a human neuroblastoma cell line, and block capsaicin-induced CGRP secretion from primary rat DRG cultures. In addition, administration of anti-ARTN antibodies to mice provides a transient, partial reversal (41%) of FCA-induced mechanical hypersensitivity. Anti-ARTN antibodies had no effect on hypersensitivity in response to partial nerve ligation in mice. These data suggest that ARTN-GFRα3 interactions partially mediate early stage nociceptive signalling following an inflammatory insult.


Subject(s)
Ganglia, Spinal/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Hyperalgesia/physiopathology , Nerve Tissue Proteins/metabolism , Signal Transduction , Animals , Hot Temperature , Male , Protein Binding , Rats , Rats, Sprague-Dawley
20.
J Osteoporos ; 2012: 391097, 2012.
Article in English | MEDLINE | ID: mdl-22934234

ABSTRACT

The purinergic P2X7 receptor is expressed by bone cells and has been shown to be important in both bone formation and bone resorption. In this study we investigated the importance of the genetic background of the mouse strains on which the P2X7 knock-out models were based by comparing bone status of a new BALB/cJ P2X7(-/-) strain with a previous one based on the C57BL/6 strain. Female four-month-old mice from both strains were DXA scanned on a PIXImus densitometer; femurs were collected for bone strength measurements and serum for bone marker analysis. Bone-related parameters that were altered only slightly in the B6 P2X7(-/-) became significantly altered in the BALB/cJ P2X7(-/-) when compared to their wild type littermates. The BALB/cJ P2X7(-/-) showed reduced levels of serum C-telopeptide fragment (s-CTX), higher bone mineral density, and increased bone strength compared to the wild type littermates. In conclusion, we have shown that the genetic background of P2X7(-/-) mice strongly influences the bone phenotype of the P2X7(-/-) mice and that P2X7 has a more significant regulatory role in bone remodeling than found in previous studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...