Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 31(4): 699-711.e6, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38181799

ABSTRACT

Drug-resistant Mycobacterium tuberculosis (Mtb) remains a major public health concern requiring complementary approaches to standard anti-tuberculous regimens. Anti-virulence molecules or compounds that enhance the activity of antimicrobial prodrugs are promising alternatives to conventional antibiotics. Exploiting host cell-based drug discovery, we identified an oxadiazole compound (S3) that blocks the ESX-1 secretion system, a major virulence factor of Mtb. S3-treated mycobacteria showed impaired intracellular growth and a reduced ability to lyse macrophages. RNA sequencing experiments of drug-exposed bacteria revealed strong upregulation of a distinct set of genes including ethA, encoding a monooxygenase activating the anti-tuberculous prodrug ethionamide. Accordingly, we found a strong ethionamide boosting effect in S3-treated Mtb. Extensive structure-activity relationship experiments revealed that anti-virulence and ethionamide-boosting activity can be uncoupled by chemical modification of the primary hit molecule. To conclude, this series of dual-active oxadiazole compounds targets Mtb via two distinct mechanisms of action.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Type VII Secretion Systems , Humans , Ethionamide/pharmacology , Oxadiazoles/pharmacology , Bacterial Proteins/genetics
2.
Antimicrob Agents Chemother ; 67(7): e0025123, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37358461

ABSTRACT

Drug-resistant tuberculosis is a global health care threat calling for novel effective treatment options. Here, we report on two novel cytochrome bc1 inhibitors (MJ-22 and B6) targeting the Mycobacterium tuberculosis respiratory chain with excellent intracellular activities in human macrophages. Both hit compounds revealed very low mutation frequencies and distinct cross-resistance patterns with other advanced cytochrome bc1 inhibitors.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Electron Transport , Cytochromes/pharmacology , Electron Transport Complex III/genetics
3.
Viruses ; 13(10)2021 10 15.
Article in English | MEDLINE | ID: mdl-34696506

ABSTRACT

Infections with viral pathogens are widespread and can cause a variety of different diseases. In-depth knowledge about viral triggers initiating an immune response is necessary to decipher viral pathogenesis. Inflammasomes, as part of the innate immune system, can be activated by viral pathogens. However, viral structural components responsible for inflammasome activation remain largely unknown. Here we analyzed glycoproteins derived from SARS-CoV-1/2, HCMV and HCV, required for viral entry and fusion, as potential triggers of NLRP3 inflammasome activation and pyroptosis in THP-1 macrophages. All tested glycoproteins were able to potently induce NLRP3 inflammasome activation, indicated by ASC-SPECK formation and secretion of cleaved IL-1ß. Lytic cell death via gasdermin D (GSDMD), pore formation, and pyroptosis are required for IL-1ß release. As a hallmark of pyroptosis, we were able to detect cleavage of GSDMD and, correspondingly, cell death in THP-1 macrophages. CRISPR-Cas9 knockout of NLRP3 and GSDMD in THP-1 macrophages confirmed and strongly support the evidence that viral glycoproteins can act as innate immunity triggers. With our study, we decipher key mechanisms of viral pathogenesis by showing that viral glycoproteins potently induce innate immune responses. These insights could be beneficial in vaccine development and provide new impulses for the investigation of vaccine-induced innate immunity.


Subject(s)
Immunity, Innate/immunology , Inflammasomes/immunology , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Viral Envelope Proteins/immunology , Viral Fusion Proteins/immunology , Cell Line, Tumor , Cytomegalovirus/immunology , Hepacivirus/immunology , Humans , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Pyroptosis/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , THP-1 Cells
4.
EMBO Mol Med ; 13(8): e14150, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34133077

ABSTRACT

Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1ß (IL-1ß) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1ß secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Immunity, Innate , Inflammasomes , Interleukin-1beta , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...