Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Mol Cancer ; 23(1): 136, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965534

ABSTRACT

BACKGROUND: BRAF inhibitors are widely employed in the treatment of melanoma with the BRAF V600E mutation. However, the development of resistance compromises their therapeutic efficacy. Diverse genomic and transcriptomic alterations are found in BRAF inhibitor resistant melanoma, posing a pressing need for convergent, druggable target that reverse therapy resistant tumor with different resistance mechanisms. METHODS: CRISPR-Cas9 screens were performed to identify novel target gene whose inhibition selectively targets A375VR, a BRAF V600E mutant cell line with acquired resistance to vemurafenib. Various in vitro and in vivo assays, including cell competition assay, water soluble tetrazolium (WST) assay, live-dead assay and xenograft assay were performed to confirm synergistic cell death. Liquid Chromatography-Mass Spectrometry analyses quantified polyamine biosynthesis and changes in proteome in vemurafenib resistant melanoma. EIF5A hypusination dependent protein translation and subsequent changes in mitochondrial biogenesis and activity were assayed by O-propargyl-puromycin labeling assay, mitotracker, mitoSOX labeling and seahorse assay. Bioinformatics analyses were used to identify the association of polyamine biosynthesis with BRAF inhibitor resistance and poor prognosis in melanoma patient cohorts. RESULTS: We elucidate the role of polyamine biosynthesis and its regulatory mechanisms in promoting BRAF inhibitor resistance. Leveraging CRISPR-Cas9 screens, we identify AMD1 (S-adenosylmethionine decarboxylase 1), a critical enzyme for polyamine biosynthesis, as a druggable target whose inhibition reduces vemurafenib resistance. Metabolomic and proteomic analyses reveal that polyamine biosynthesis is upregulated in vemurafenib-resistant cancer, resulting in enhanced EIF5A hypusination, translation of mitochondrial proteins and oxidative phosphorylation. We also identify that sustained c-Myc levels in vemurafenib-resistant cancer are responsible for elevated polyamine biosynthesis. Inhibition of polyamine biosynthesis or c-Myc reversed vemurafenib resistance both in vitro cell line models and in vivo in a xenograft model. Polyamine biosynthesis signature is associated with poor prognosis and shorter progression free survival after BRAF/MAPK inhibitor treatment in melanoma cohorts, highlighting the clinical relevance of our findings. CONCLUSIONS: Our findings delineate the molecular mechanisms involving polyamine-EIF5A hypusination-mitochondrial respiration pathway conferring BRAF inhibitor resistance in melanoma. These targets will serve as effective therapeutic targets that can maximize the therapeutic efficacy of existing BRAF inhibitors.


Subject(s)
Drug Resistance, Neoplasm , Eukaryotic Translation Initiation Factor 5A , Melanoma , Mutation , Peptide Initiation Factors , Polyamines , Proto-Oncogene Proteins B-raf , RNA-Binding Proteins , Vemurafenib , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Animals , Polyamines/metabolism , Mice , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Cell Line, Tumor , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Vemurafenib/pharmacology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Xenograft Model Antitumor Assays , CRISPR-Cas Systems , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Lysine/analogs & derivatives
2.
Adv Sci (Weinh) ; 11(22): e2309917, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520717

ABSTRACT

Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy.


Subject(s)
B7-H1 Antigen , Nanoparticles , PTEN Phosphohydrolase , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Nanoparticles/chemistry , Animals , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Female , Disease Models, Animal , Lipids/chemistry , Humans , Cell Line, Tumor , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Mice, Inbred BALB C , Immunotherapy/methods , Liposomes
3.
Biomedicines ; 11(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37893219

ABSTRACT

Monoamine transporters, including dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT, respectively), are important therapeutic targets due to their essential roles in the brain. To overcome the slow action of selective monoamine reuptake inhibitors, dual- or triple-acting inhibitors have been developed. Here, to examine whether combination treatments of selective reuptake inhibitors have synergistic effects, the pharmacological properties of DAT, NET, and SERT were investigated using the selective inhibitors of each transporter, which are vanoxerine, nisoxetine, and fluoxetine, respectively. Potencies were determined via fluorescence-based substrate uptake assays in the absence and presence of other inhibitors to test the multi-drug effects on individual transporters, resulting in antagonistic effects on DAT. In detail, fluoxetine resulted in a 1.6-fold increased IC50 value of vanoxerine for DAT, and nisoxetine produced a more drastic increase in the IC50 value by six folds. Furthermore, the effects of different inhibitors, specifically monovalent ions, were tested on DAT inhibition by vanoxerine. Interestingly, these ions also reduced vanoxerine potency in a similar manner. The homology models of DAT suggested a potential secondary inhibitor binding site that affects inhibition in an allosteric manner. These findings imply that the use of combination therapy with monoamine reuptake inhibitors should be approached cautiously, as antagonistic effects may occur.

4.
BMC Biol ; 21(1): 45, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36829149

ABSTRACT

BACKGROUND: CRISPR-based screens are revolutionizing drug discovery as tools to identify genes whose ablation induces a phenotype of interest. For instance, CRISPR-Cas9 screening has been successfully used to identify novel therapeutic targets in cancer where disruption of genes leads to decreased viability of malignant cells. However, low-activity guide RNAs may give rise to variable changes in phenotype, preventing easy identification of hits and leading to false negative results. Therefore, correcting the effects of bias due to differences in guide RNA efficiency in CRISPR screening data can improve the efficiency of prioritizing hits for further validation. Here, we developed an approach to identify hits from negative CRISPR screens by correcting the fold changes (FC) in gRNA frequency by the actual, observed frequency of indel mutations generated by gRNA. RESULTS: Each gRNA was coupled with the "reporter sequence" that can be targeted by the same gRNA so that the frequency of mutations in the reporter sequence can be used as a proxy for the endogenous target gene. The measured gRNA activity was used to correct the FC. We identified indel generation efficiency as the dominant factor contributing significant bias to screening results, and our method significantly removed such bias and was better at identifying essential genes when compared to conventional fold change analysis. We successfully applied our gRNA activity data to previously published gRNA screening data, and identified novel genes whose ablation could synergize with vemurafenib in the A375 melanoma cell line. Our method identified nicotinamide N-methyltransferase, lactate dehydrogenase B, and polypyrimidine tract-binding protein 1 as synergistic targets whose ablation sensitized A375 cells to vemurafenib. CONCLUSIONS: We identified the variations in target cleavage efficiency, even in optimized sgRNA libraries, that pose a strong bias in phenotype and developed an analysis method that corrects phenotype score by the measured differences in the targeting efficiency among sgRNAs. Collectively, we expect that our new analysis method will more accurately identify genes that confer the phenotype of interest.


Subject(s)
CRISPR-Cas Systems , RNA , Vemurafenib , Mutation , Cell Line
5.
Bioorg Chem ; 131: 106274, 2023 02.
Article in English | MEDLINE | ID: mdl-36434952

ABSTRACT

Disruption of protein-protein interaction between transcriptional enhancer factor (TEA)-domain (TEAD; a transcription factor) and its co-activator Yes-associated protein (YAP)/ transcriptional co-activator with PDZ-binding motif (TAZ) is a potential therapeutic strategy against various types of solid tumors. Based on hit compound 8 and 9a, hydrazone derivatives with dioxo-benzo[d]isothiazole (9b-n) and oxime ester (10a-s) or amide derivatives (11a-r) with dioxo-benzo[b]thiophene were designed and synthesized as novel TEAD-YAP interaction inhibitors. Amide derivative 11q exhibited a higher potency in inhibiting TEAD-YAP reporter expression activity (IC50 = 12.7 µM), endogenous target gene (e.g., CTGF and CYR61) expression, breast cancer cell growth (GI50 = 3.2 µM), and anchorage-independent growth in soft agar. Molecular docking analysis suggested that the newly synthesized compounds bound to interface 2 of TEAD had lower docking scores compared to the compounds that bind to interface 3; moreover, they were predicted to overlap with YAP. Therefore, we identified 11q as an attractive therapeutic agent for treating solid tumors overexpressing YAP/TAZ.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Molecular Docking Simulation , Transcription Factors/metabolism , Amides
6.
Bioact Mater ; 21: 358-380, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36185736

ABSTRACT

Nanomedicines for drug delivery and imaging-guided cancer therapy is a rapidly growing research area. The unique properties of nanomedicines have a massive potential in solving longstanding challenges of existing cancer drugs, such as poor localization at the tumor site, high drug doses and toxicity, recurrence, and poor immune response. However, inadequate biocompatibility restricts their potential in clinical translation. Therefore, advanced nanomaterials with high biocompatibility and enhanced therapeutic efficiency are highly desired to fast-track the clinical translation of nanomedicines. Intrinsic properties of nanoscale covalent organic frameworks (nCOFs), such as suitable size, modular pore geometry and porosity, and straightforward post-synthetic modification via simple organic transformations, make them incredibly attractive for future nanomedicines. The ability of COFs to disintegrate in a slightly acidic tumor microenvironment also gives them a competitive advantage in targeted delivery. This review summarizes recently published applications of COFs in drug delivery, photo-immuno therapy, sonodynamic therapy, photothermal therapy, chemotherapy, pyroptosis, and combination therapy. Herein we mainly focused on modifications of COFs to enhance their biocompatibility, efficacy and potential clinical translation. This review will provide the fundamental knowledge in designing biocompatible nCOFs-based nanomedicines and will help in the rapid development of cancer drug carriers and theranostics.

7.
Cell Death Dis ; 13(7): 655, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902580

ABSTRACT

X-linked inhibitor of apoptosis-associated factor-1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in many human cancers. Despite accumulating evidence for the pro-apoptotic role for XAF1 under various stressful conditions, its involvement in endoplasmic reticulum (ER) stress response remains undefined. Here, we report that XAF1 increases cell sensitivity to ER stress and acts as a molecular switch in unfolded protein response (UPR)-mediated cell-fate decisions favoring apoptosis over adaptive autophagy. Mechanistically, XAF1 interacts with and destabilizes ER stress sensor GRP78 through the assembly of zinc finger protein 313 (ZNF313)-mediated destruction complex. Moreover, XAF1 expression is activated through PERK-Nrf2 signaling and destabilizes C-terminus of Hsc70-interacting protein (CHIP) ubiquitin E3 ligase, thereby blocking CHIP-mediated K63-linked ubiquitination and subsequent phosphorylation of inositol-required enzyme-1α (IRE1α) that is involved in in the adaptive ER stress response. In tumor xenograft assays, XAF1-/- tumors display substantially lower regression compared to XAF1+/+ tumors in response to cytotoxic dose of ER stress inducer. XAF1 and GRP78 expression show an inverse correlation in human cancer cell lines and primary breast carcinomas. Collectively this study uncovers an important role for XAF1 as a linchpin to govern the sensitivity to ER stress and the outcomes of UPR signaling, illuminating the mechanistic consequence of XAF1 inactivation in tumorigenesis.


Subject(s)
Endoplasmic Reticulum Stress , Neoplasms , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/genetics , Endoribonucleases/metabolism , Humans , Neoplasms/pathology , Protein Serine-Threonine Kinases , Ubiquitin-Protein Ligases/metabolism , Unfolded Protein Response
8.
Pharmaceutics ; 14(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745843

ABSTRACT

In vitro transcribed mRNA for the synthesis of any given protein has shown great potential in cancer gene therapy, especially in cancer vaccines for immunotherapy. To overcome physiological barriers, such as rapid degradation by enzymatic attack and poor cellular uptake due to their large size and hydrophilic properties, many delivery carriers for mRNAs are being investigated for improving the bioavailability of mRNA. Recently, cell-penetrating peptides (CPPs) have received attention as promising tools for gene delivery. In terms of their biocompatibility and the ability to target specific cells with the versatility of peptide sequences, they may provide clues to address the challenges of conventional delivery systems for cancer mRNA delivery. In this study, optimal conditions for the CPP/mRNA complexes were identified in terms of complexation capacity and N/P ratio, and protection against RNase was confirmed. When cancer cells were treated at a concentration of 6.8 nM, which could deliver the highest amount of mRNA without toxicity, the amphipathic CPP/mRNA complexes with a size less than 200 nm showed high cellular uptake and protein expression. With advances in our understanding of CPPs, CPPs designed to target tumor tissues will be promising for use in developing a new class of mRNA delivery vehicles in cancer therapy.

9.
Oncogene ; 41(20): 2897-2908, 2022 05.
Article in English | MEDLINE | ID: mdl-35430604

ABSTRACT

X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a pro-apoptotic tumor suppressor that is frequently inactivated in multiple human cancers. However, its candidacy as a suppressor in the pathogenesis of breast cancer remains undefined. Here, we report that XAF1 acts as a molecular switch in estrogen (E2)-mediated cell-fate decisions favoring apoptosis over cell proliferation. XAF1 promoter hypermethylation is observed predominantly in estrogen receptor α (ERα)-positive versus ERα-negative tumor cells and associated with attenuated apoptotic response to E2. XAF1 is activated by E2 through a G protein-coupled estrogen receptor-mediated non-genomic pathway and induces ERα degradation and apoptosis while it is repressed by ERα for E2 stimulation of cell proliferation. The XAF1-ERα mutual antagonism dictates the outcomes of E2 signaling and its alteration is linked to the development of E2-resistant tumors. Mechanistically, XAF1 destabilizes ERα through the assembly of breast cancer-associated gene 1 (BRCA1)-mediated destruction complex. XAF1 interacts with ERα and BRCA1 via the zinc finger (ZF) domains 5/6 and 4, respectively, and the mutants lacking either of these domains fail to drive ERα ubiquitination and apoptosis. E2-induced regression of XAF1+/+ tumors is abolished by XAF1 depletion while XAF1-/- tumors recover E2 response by XAF1 restoration. XAF1 and ERα expression show an inverse correlation in primary breast tumors, and XAF1 expression is associated with the overall survival of patients with ERα-positive but not ERα-negative cancer. Together, this study uncovers an important role for the XAF1-ERα antagonism as a linchpin to govern E2-mediated cell-fate decisions, illuminating the mechanistic consequence of XAF1 alteration in breast tumorigenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Breast Neoplasms , Estrogen Receptor alpha , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Humans
10.
Neurooncol Adv ; 4(1): vdac013, 2022.
Article in English | MEDLINE | ID: mdl-35274103

ABSTRACT

Background: X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a tumor suppressor that is commonly inactivated in multiple human cancers. However, its role in the pathogenesis and therapeutic response of glioma is poorly characterized. Methods: XAF1 activation by temozolomide (TMZ) and its effect on TMZ cytotoxicity were defined using luciferase reporter, flow cytometry, and immunofluorescence assays. Signaling mechanism was analyzed using genetic and pharmacologic experiments. In vivo studies were performed in mice to validate the role of XAF1 in TMZ therapy. Results: Epigenetic alteration of XAF1 is frequent in cell lines and primary tumors and contributes to cancer cell growth. XAF1 transcription is activated by TMZ via JNK-IRF-1 signaling to promote apoptosis while it is impaired by promoter hypermethylation. In tumor cells expressing high O 6-methylguanine-DNA methyltransferase (MGMT), XAF1 response to TMZ is debilitated. XAF1 facilitates TMZ-mediated autophagic flux to direct an apoptotic transition of protective autophagy. Mechanistically, XAF1 is translocated into the mitochondria to stimulate reactive oxygen species (ROS) production and ataxia telangiectasia mutated (ATM)-AMP-activated protein kinase (AMPK) signaling. A mutant XAF1 lacking the zinc finger 6 domain fails to localize in the mitochondria and activate ROS-ATM-AMPK signaling and autophagy-mediated apoptosis. XAF1-restored xenograft tumors display a reduced growth rate and enhanced therapeutic response to TMZ, which is accompanied with activation of ATM-AMPK signaling. XAF1 expression is associated with overall survival of TMZ treatment patients, particularly with low MGMT cancer. Conclusions: This study uncovers an important role for the XAF1-ATM-AMPK axis as a linchpin to govern glioma response to TMZ therapy.

11.
J Control Release ; 345: 62-74, 2022 05.
Article in English | MEDLINE | ID: mdl-35263615

ABSTRACT

Upregulation of oncogenic miRNA21 (miR-21) plays a pivotal role in proliferation, migration and invasion of cancer cells. In addition to cancer cells, tumor-associated macrophages (TAMs) also have high abundance of miR-21, which accelerates malignant progression of tumors in the late stages of carcinogenesis. Despite of the pro-tumorigenic functions of miR-21 in TAMs and cancer cells, reliable therapeutic strategies to simultaneously inhibit miR-21 activity in both types of cell have not yet been developed. In this study, we designed a dual-targeting drug delivery system of miR-21 inhibitors that could bind to both tumor cells and macrophages with overexpressed PD-L1 receptors. This peptide-oligonucleotide conjugate (Pep-21) consists of a PDL1-binding peptide covalently linked with an anti-miR-21 inhibitor via click chemistry. Pep-21 was preferentially internalized in both cell types, consequently depleting endogenous miR-21. Our studies found that Pep-21 treatment reduced tumor cell migration, reprogrammed immunosuppressive M2-type TAMs into M1-type macrophages, and restrained tumor progression. Collectively, neutralization of miR-21 activity in both cancer cells and TAMs can be a promising strategy for effective antitumor responses.


Subject(s)
MicroRNAs , Neoplasms , B7-H1 Antigen/metabolism , Humans , Neoplasms/drug therapy , Peptides , Tumor Microenvironment , Tumor-Associated Macrophages
12.
Angew Chem Int Ed Engl ; 61(17): e202110832, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35142018

ABSTRACT

Despite extensive efforts to realize effective photodynamic therapy (PDT), there is still a lack of therapeutic approaches concisely structured to mitigate the major obstacles of PDT in clinical applications. Herein, we report a molecular strategy exploiting ascorbate chemistry to enhance the efficacy of PDT in cancer cells overexpressing glucose transporter 1 (GLUT1). AA-EtNBS, a 5-O-substituted ascorbate-photosensitizer (PS) conjugate, undergoes a reversible structural conversion of the ascorbate moiety in the presence of reactive oxygen species (ROS) and glutathione (GSH), thereby promoting its uptake in GLUT1-overexpressed KM12C colon cancer cells and perturbing tumor redox homeostasis, respectively. Due to the unique pro-oxidant role of ascorbate in tumor environments, AA-EtNBS effectively sensitized KM12C cancer cells prior to PS-mediated generation of superoxide radicals under near-infrared (NIR) illumination. AA-EtNBS successfully exhibited GLUT1-targeted synergistic therapeutic efficacy during PDT both in vitro and in vivo. Therefore, this study outlines a promising strategy employing ascorbate both as a targeting unit for GLUT1-overexpressed cancer cells and redox homeostasis destruction agent, thereby enhancing therapeutic responses towards anticancer treatment when used in conjunction with conventional PDT.


Subject(s)
Neoplasms , Photochemotherapy , Ascorbic Acid/pharmacology , Cell Line, Tumor , Glucose Transporter Type 1 , Glutathione/metabolism , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism
13.
ACS Appl Mater Interfaces ; 14(1): 20-31, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34914354

ABSTRACT

Tissue microarchitecture imposes physical constraints to the migration of individual cells. Especially in cancer metastasis, three-dimensional structural barriers within the extracellular matrix are known to affect the migratory behavior of cells, regulating the pathological state of the cells. Here, we employed a culture platform with micropillar arrays of 2 µm diameter and 16 µm pitch (2.16 micropillar) as a mechanical stimulant. Using this platform, we investigated how a long-term culture of A549 human lung carcinoma cells on the (2.16) micropillar-embossed dishes would influence the pathological state of the cell. A549 cells grown on the (2.16) micropillar array with 10 µm height exhibited a significantly elongated morphology and enhanced migration even after the detachment and reattachment, as evidenced in the conventional wound-healing assay, single-cell tracking analysis, and in vivo tumor colonization assays. Moreover, the pillar-induced morphological deformation in nuclei was accompanied by cell-cycle arrest in the S phase, leading to suppressed proliferation. While these marked traits of morphology-migration-proliferation support more aggressive characteristics of metastatic cancer cells, typical indices of epithelial-mesenchymal transition were not found, but instead, remarkable traces of amoeboidal transition were confirmed. Our study also emphasizes the importance of mechanical stimuli from the microenvironment during pathogenesis and how gained traits can be passed onto subsequent generations, ultimately affecting their pathophysiological behavior. Furthermore, this study highlights the potential use of pillar-based mechanical stimuli as an in vitro cell culture strategy to induce more aggressive tumorigenic cancer cell models.


Subject(s)
Cell Culture Techniques/methods , Lung Neoplasms/metabolism , A549 Cells , Animals , Cell Culture Techniques/instrumentation , Cell Movement/physiology , Cell Proliferation/physiology , Fatty Acids/metabolism , Female , Humans , Mechanical Phenomena , Metabolomics , Mice, Inbred BALB C , Mice, Nude , S Phase Cell Cycle Checkpoints/physiology
15.
Int J Mol Sci ; 22(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34576180

ABSTRACT

A variety of innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, natural killer cells, and neutrophils in the tumor microenvironments, contribute to tumor progression. However, while several recent reports have studied the use of immune checkpoint-based cancer immunotherapy, little work has focused on modulating the innate immune cells. This review focuses on the recent studies and challenges of using nanoparticles to target innate immune cells. In particular, we also examine the immunosuppressive properties of certain innate immune cells that limit clinical benefits. Understanding the cross-talk between tumors and innate immune cells could contribute to the development of strategies for manipulating the nanoparticles targeting tumor microenvironments.


Subject(s)
Tumor Microenvironment/physiology , Animals , Humans , Immunity, Innate/genetics , Immunity, Innate/physiology , Myeloid-Derived Suppressor Cells/metabolism , Nanoparticles/chemistry , Tumor Microenvironment/genetics
16.
Cancers (Basel) ; 13(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198590

ABSTRACT

Multiple cancer-related biological processes are mediated by protein-protein interactions (PPIs). Through interactions with a variety of factors, members of the ribosomal S6 kinase (RSK) family play roles in cell cycle progression and cell proliferation. In particular, RSK3 contributes to cancer viability, but the underlying mechanisms remain unknown. We performed a kinase library screen to find IκBα PPI binding partners and identified RSK3 as a novel IκBα binding partner using a cell-based distribution assay. In addition, we discovered a new PPI inhibitor using mammalian two-hybrid (MTH) analysis. We assessed the antitumor effects of the new inhibitor using cell proliferation and colony formation assays and monitored the rate of cell death by FACS apoptosis assay. IκBα is phosphorylated by the active form of the RSK3 kinase. A small-molecule inhibitor that targets the RSK3/IκBα complex exhibited antitumor activity in breast cancer cells and increased their rate of apoptosis. RSK3 phosphorylation and RSK3/IκBα complex formation might be functionally important in breast tumorigenesis. The RSK3/IκBα-specific binding inhibitor identified in this study represents a lead compound for the development of new anticancer drugs.

17.
BMC Cancer ; 21(1): 596, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34030642

ABSTRACT

BACKGROUND: Phosphorylation of NF-kappaB inhibitor alpha (IκBα) is key to regulation of NF-κB transcription factor activity in the cell. Several sites of IκBα phosphorylation by members of the IκB kinase family have been identified, but phosphorylation of the protein by other kinases remains poorly understood. We investigated a new phosphorylation site on IκBα and identified its biological function in breast cancer cells. METHODS: Previously, we observed that aurora kinase (AURK) binds IκBα in the cell. To identify the domains of IκBα essential for phosphorylation by AURK, we performed kinase assays with a series of IκBα truncation mutants. AURK significantly promoted activation of IκBα at serine 32 but not serine 36; by contrast, IκB kinase (IKK) family proteins activated both of these residues. We also confirmed phosphorylation of IκBα by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and nano-liquid chromatography hybrid quadrupole orbitrap mass spectrometer (nanoLC-MS/MS; Q-Exactive). RESULTS: We identified two novel sites of serine phosphorylation, S63 and S262. Alanine substitution of S63 and S262 (S63A and S262A) of IκBα inhibited proliferation and suppressed p65 transcription activity. In addition, S63A and/or S262A of IκBα regulated apoptotic and necroptotic effects in breast cancer cells. CONCLUSIONS: Phosphorylation of IκBα by AURK at novel sites is related to the apoptosis and necroptosis pathways in breast cancer cells.


Subject(s)
Aurora Kinase C/metabolism , Breast Neoplasms/pathology , NF-KappaB Inhibitor alpha/metabolism , Necroptosis , Binding Sites/genetics , Female , Humans , MCF-7 Cells , Mutagenesis, Site-Directed , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/isolation & purification , NF-kappa B/metabolism , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods
18.
ACS Appl Bio Mater ; 4(3): 2120-2127, 2021 03 15.
Article in English | MEDLINE | ID: mdl-35014340

ABSTRACT

Melanoma is the most threatening form of metastatic skin cancer that develops from melanocytes and causes a large majority of deaths due to poor therapeutic prognosis. It has significant limitations in treatment because it shows great resistance to chemotherapy, radiotherapy, and other therapeutic methods. A noninvasive and clinically accepted therapeutic modality, photodynamic therapy (PDT), is a promising treatment option, but it is limitedly applied for melanoma skin cancer treatment. This is because most of the photosensitizers are unlikely to be expected to have a remarkable effect on melanoma due to drug efflux by melanin pigmentation and intrinsic antioxidant defense mechanisms. Moreover, melanin is a dominant absorber in the spectral region of 500-600 nm that can cause the decreased photoreaction efficiency of photosensitizers. Herein, to overcome these drawbacks, we have developed a phenylthiourea-conjugated BODIPY photosensitizer (PTUBDP) for tyrosinase-positive melanoma-targeted PDT. In light of our results, it exhibited an enhanced cytotoxic efficacy compared to BDP, a parallel PDT agent that absence of phenylthiourea unit. PTUBDP shows outstanding effects of increased oxidative stress by an enhanced cellular uptake of the tyrosinase positive melanoma cell line (B16F10). This work presents increased therapeutic efficacy through the combined therapeutic approach, enabling enhanced reactive oxygen species (ROS) generation as well as overcoming the critical limitations of melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Melanoma/drug therapy , Monophenol Monooxygenase/metabolism , Photochemotherapy , Photosensitizing Agents/pharmacology , Skin Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Boron Compounds/chemistry , Boron Compounds/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Materials Testing , Melanoma/metabolism , Melanoma/pathology , Molecular Structure , Particle Size , Phenylthiourea/chemistry , Phenylthiourea/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
19.
Int J Mol Sci ; 22(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33374978

ABSTRACT

Exosomes are cell-secreted nanovesicles that naturally contain biomolecular cargoes such as lipids, proteins, and nucleic acids. Exosomes mediate intercellular communication, enabling the transfer biological signals from the donor cells to the recipient cells. Recently, exosomes are emerging as promising drug delivery vehicles due to their strong stability in blood circulation, high biocompatibility, low immunogenicity, and natural targeting ability. In particular, exosomes derived from specific types of cells can carry endogenous signaling molecules with therapeutic potential for cancer treatment, thus presenting a significant impact on targeted drug delivery and therapy. Furthermore, exosomes can be engineered to display targeting moieties on their surface or to load additional therapeutic agents. Therefore, a comprehensive understanding of exosome biogenesis and the development of efficient exosome engineering techniques will provide new avenues to establish convincing clinical therapeutic strategies based on exosomes. This review focuses on the therapeutic applications of exosomes derived from various cells and the exosome engineering technologies that enable the accurate delivery of various types of cargoes to target cells for cancer therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell-Derived Microparticles/metabolism , Drug Delivery Systems/methods , Exosomes/metabolism , Nanoparticles/metabolism , Neoplasms/drug therapy , Animals , Drug Carriers/metabolism , Humans , Molecular Targeted Therapy/methods
20.
Chem ; 6(6): 1408-1419, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32864504

ABSTRACT

Tumor recurrence as a result of therapy-induced nuclear DNA lesions is a major issue in cancer treatment. Currently, only a few examples of potentially non-genotoxic drugs have been reported. Mitochondrial re-localization of ciprofloxacin, one of the most commonly prescribed synthetic antibiotics, is reported here as a new approach. Conjugating ciprofloxacin to a triphenyl phosphonium group (giving lead Mt-CFX), is used to enhance the concentration of ciprofloxacin in the mitochondria of cancer cells. The localization of Mt-CFX to the mitochondria induces oxidative damage to proteins, mtDNA, and lipids. A large bias in favor of mtDNA damage over nDNA was seen with Mt-CFX, contrary to classic cancer chemotherapeutics. Mt-CFX was found to reduce cancer growth in a xenograft mouse model and proved to be well tolerated. Mitochondrial relocalization of antibiotics could emerge as a useful approach to generating anticancer leads that promote cell death via the selective induction of mitochondrially-mediated oxidative damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...