Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Emerg Microbes Infect ; 13(1): 2373307, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38953857

ABSTRACT

SARS-CoV-2 has been evolving into a large number of variants, including the highly pathogenic Delta variant, and the currently prevalent Omicron subvariants with extensive evasion capability, which raises an urgent need to develop new broad-spectrum neutralizing antibodies. Herein, we engineer two IgG-(scFv)2 form bispecific antibodies with overlapping epitopes (bsAb1) or non-overlapping epitopes (bsAb2). Both bsAbs are significantly superior to the parental monoclonal antibodies in terms of their antigen-binding and virus-neutralizing activities against all tested circulating SARS-CoV-2 variants including currently dominant JN.1. The bsAb1 can efficiently neutralize all variants insensitive to parental monoclonal antibodies or the cocktail with IC50 lower than 20 ng/mL, even slightly better than bsAb2. Furthermore, the cryo-EM structures of bsAb1 in complex with the Omicron spike protein revealed that bsAb1 with overlapping epitopes effectively locked the S protein, which accounts for its conserved neutralization against Omicron variants. The bispecific antibody strategy engineered from overlapping epitopes provides a novel solution for dealing with viral immune evasion.


Subject(s)
Antibodies, Bispecific , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Humans , Antibodies, Viral/immunology , Epitopes/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , COVID-19/immunology , COVID-19/virology , COVID-19/prevention & control , Neutralization Tests
2.
Nat Commun ; 15(1): 4330, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773072

ABSTRACT

The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop ß1S2-ß1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Henipavirus Infections , Viral Fusion Proteins , Animals , Antibodies, Neutralizing/immunology , Female , Antibodies, Viral/immunology , Henipavirus Infections/virology , Henipavirus Infections/immunology , Viral Fusion Proteins/immunology , Viral Fusion Proteins/chemistry , Humans , Viral Envelope Proteins/immunology , Viral Envelope Proteins/chemistry , Nipah Virus/immunology , Virus Internalization/drug effects , Henipavirus/immunology , Cricetinae , Cross Reactions/immunology , Hendra Virus/immunology , Macaca , Mesocricetus , Crystallography, X-Ray
3.
Int J Biol Macromol ; 253(Pt 3): 126817, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37690653

ABSTRACT

SARS-CoV-2, a type of respiratory virus, has exerted a great impact on global health and economy over the past three years. Antibody-based therapy was initially successful but later failed due to the accumulation of mutations in the spike protein of the virus. Strategies that enable antibodies to resist virus escape are therefore of great significance. Here, we engineer a bispecific SARS-CoV-2 neutralizing nanobody in secretory Immunoglobulin A (SIgA) format, named S2-3-IgA2m2, which shows broad and potent neutralization against SARS-CoV-1, SARS-CoV-2 and its variants of concern (VOCs) including XBB and BQ.1.1. S2-3-IgA2m2 is ∼1800-fold more potent than its parental IgG counterpart in neutralizing XBB. S2-3-IgA2m2 is stable in mouse lungs at least for three days when administrated by nasal delivery. In hamsters infected with BA.5, three intranasal doses of S2-3-IgA2m2 at 1 mg/kg significantly reduce viral RNA loads and completely eliminate infectious particles in the trachea and lungs. Notably, even at single dose of 1 mg/kg, S2-3-IgA2m2 prophylactically administered through the intranasal route drastically reduces airway viral RNA loads and infectious particles. This study provides an effective weapon combating SARS-CoV-2, proposes a new strategy overcoming the virus escape, and lays strategic reserves for rapid response to potential future outbreaks of "SARS-CoV-3".


Subject(s)
Antibodies , SARS-CoV-2 , Animals , Cricetinae , Mice , Disease Outbreaks , Immunoglobulin A, Secretory , RNA, Viral , Antibodies, Viral , Antibodies, Neutralizing
4.
Cell Discov ; 9(1): 37, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37015915

ABSTRACT

The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread around the world. Mutant strains of SARS-CoV-2 are constantly emerging. At present, Omicron variants have become mainstream. In this work, we carried out a systematic and comprehensive analysis of the reported spike protein antibodies, counting the epitopes and genotypes of these antibodies. We further comprehensively analyzed the impact of Omicron mutations on antibody epitopes and classified these antibodies according to their binding patterns. We found that the epitopes of the H-RBD class antibodies were significantly less affected by Omicron mutations than other classes. Binding and virus neutralization experiments showed that such antibodies could effectively inhibit the immune escape of Omicron. Cryo-EM results showed that this class of antibodies utilized a conserved mechanism to neutralize SARS-CoV-2. Our results greatly help us deeply understand the impact of Omicron mutations. Meanwhile, it also provides guidance and insights for developing Omicron antibodies and vaccines.

5.
Cell Discov ; 8(1): 132, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494344

ABSTRACT

Current SARS-CoV-2 Omicron subvariants impose a heavy burden on global health systems by evading immunity from most developed neutralizing antibodies and vaccines. Here, we identified a nanobody (aSA3) that strongly cross-reacts with the receptor binding domain (RBD) of both SARS-CoV-1 and wild-type (WT) SARS-CoV-2. The dimeric construct of aSA3 (aSA3-Fc) tightly binds and potently neutralizes both SARS-CoV-1 and WT SARS-CoV-2. Based on X-ray crystallography, we engineered a bispecific nanobody dimer (2-3-Fc) by fusing aSA3-Fc to aRBD-2, a previously identified broad-spectrum nanobody targeting an RBD epitope distinct from aSA3. 2-3-Fc exhibits single-digit ng/mL neutralizing potency against all major variants of concerns including BA.5. In hamsters, a single systemic dose of 2-3-Fc at 10 mg/kg conferred substantial efficacy against Omicron infection. More importantly, even at three low doses of 0.5 mg/kg, 2-3-Fc prophylactically administered through the intranasal route drastically reduced viral RNA loads and completely eliminated infectious Omicron particles in the trachea and lungs. Finally, we discovered that 2(Y29G)-3-Fc containing a Y29G substitution in aRBD-2 showed better activity than 2-3-Fc in neutralizing BA.2.75, a recent Omicron subvariant that emerged in India. This study expands the arsenal against SARS-CoV-1, provides potential therapeutic and prophylactic candidates that fully cover major SARS-CoV-2 variants, and may offer a simple preventive approach against Omicron and its subvariants.

6.
Viruses ; 14(6)2022 06 18.
Article in English | MEDLINE | ID: mdl-35746803

ABSTRACT

The global spread of SARS-CoV-2 and its variants poses a serious threat to human health worldwide. Recently, the emergence of Omicron has presented a new challenge to the prevention and control of the COVID-19 pandemic. A convenient and reliable in vitro neutralization assay is an important method for validating the efficiency of antibodies, vaccines, and other potential drugs. Here, we established an effective assay based on a pseudovirus carrying a full-length spike (S) protein of SARS-CoV-2 variants in the HIV-1 backbone, with a luciferase reporter gene inserted into the non-replicate pseudovirus genome. The key parameters for packaging the pseudovirus were optimized, including the ratio of the S protein expression plasmids to the HIV backbone plasmids and the collection time for the Alpha, Beta, Gamma, Kappa, and Omicron pseudovirus particles. The pseudovirus neutralization assay was validated using several approved or developed monoclonal antibodies, underscoring that Omicron can escape some neutralizing antibodies, such as REGN10987 and REGN10933, while S309 and ADG-2 still function with reduced neutralization capability. The neutralizing capacity of convalescent plasma from COVID-19 convalescent patients in Wuhan was tested against these pseudoviruses, revealing the immune evasion of Omicron. Our work established a practical pseudovirus-based neutralization assay for SARS-CoV-2 variants, which can be conducted safely under biosafety level-2 (BSL-2) conditions, and this assay will be a promising tool for studying and characterizing vaccines and therapeutic candidates against Omicron-included SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Neutralization Tests/methods , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
7.
Signal Transduct Target Ther ; 7(1): 139, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35478188

ABSTRACT

The SARS-CoV-2 Omicron variant shows substantial resistance to neutralization by infection- and vaccination-induced antibodies, highlighting the demands for research on the continuing discovery of broadly neutralizing antibodies (bnAbs). Here, we developed a panel of bnAbs against Omicron and other variants of concern (VOCs) elicited by vaccination of adenovirus-vectored COVID-19 vaccine (Ad5-nCoV). We also investigated the human longitudinal antibody responses following vaccination and demonstrated how the bnAbs evolved over time. A monoclonal antibody (mAb), named ZWD12, exhibited potent and broad neutralization against SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa, Delta, and Omicron by blocking the spike protein binding to the angiotensin-converting enzyme 2 (ACE2) and provided complete protection in the challenged prophylactic and therapeutic K18-hACE2 transgenic mouse model. We defined the ZWD12 epitope by determining its structure in complex with the spike (S) protein via cryo-electron microscopy. This study affords the potential to develop broadly therapeutic mAb drugs and suggests that the RBD epitope bound by ZWD12 is a rational target for the design of a broad spectrum of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Cryoelectron Microscopy , Epitopes , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Envelope Proteins
8.
Cell Discov ; 7(1): 64, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34373443

ABSTRACT

Coronavirus disease 2019 (COVID-19), driven by SARS-CoV-2, is a severe infectious disease that has become a global health threat. Vaccines are among the most effective public health tools for combating COVID-19. Immune status is critical for evaluating the safety and response to the vaccine, however, the evolution of the immune response during immunization remains poorly understood. Single-cell RNA sequencing (scRNA-seq) represents a powerful tool for dissecting multicellular behavior and discovering therapeutic antibodies. Herein, by performing scRNA/V(D)J-seq on peripheral blood mononuclear cells from four COVID-19 vaccine trial participants longitudinally during immunization, we revealed enhanced cellular immunity with concerted and cell type-specific IFN responses as well as boosted humoral immunity with SARS-CoV-2-specific antibodies. Based on the CDR3 sequence and germline enrichment, we were able to identify several potential binding antibodies. We synthesized, expressed and tested 21 clones from the identified lineages. Among them, one monoclonal antibody (P3V6-1) exhibited relatively high affinity with the extracellular domain of Spike protein, which might be a promising therapeutic reagent for COVID-19. Overall, our findings provide insights for assessing vaccine through the novel scRNA/V(D)J-seq approach, which might facilitate the development of more potent, durable and safe prophylactic vaccines.

9.
Viruses ; 13(3)2021 03 15.
Article in English | MEDLINE | ID: mdl-33804206

ABSTRACT

Lassa virus (LASV) is a rodent-borne arenavirus circulating in West African regions that causes Lassa fever (LF). LF is normally asymptomatic at the initial infection stage, but can progress to severe disease with multiorgan collapse and hemorrhagic fever. To date, the therapeutic choices are limited, and there is no approved vaccine for avoiding LASV infection. Adenoviral vector-based vaccines represent an effective countermeasure against LASV because of their safety and adequate immunogenicity, as demonstrated in use against other emerging viral infections. Here, we constructed and characterized a novel Ad5 (E1-, E3-) vectored vaccine containing the glycoprotein precursor (GPC) of LASV. Ad5-GPCLASV elicited both humoral and cellular immune responses in BALB/c mice. Moreover, a bioluminescent imaging-based BALB/c mouse model infected with GPC-bearing and luciferase-expressing replication-incompetent LASV pseudovirus was utilized to evaluate the vaccine efficacy. The bioluminescence intensity of immunized mice was significantly lower than that of control mice after being inoculated with LASV pseudovirus. This study suggests that Ad5-GPCLASV represents a potential vaccine candidate against LF.


Subject(s)
Adenoviridae , Genetic Vectors/immunology , Lassa Fever , Viral Vaccines/immunology , Africa, Western , Animals , HEK293 Cells , Humans , Immunity, Cellular , Lassa Fever/immunology , Lassa Fever/prevention & control , Lassa virus/immunology , Mice , Mice, Inbred BALB C
10.
Int Immunopharmacol ; 91: 107297, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33360088

ABSTRACT

Clostridium tetani causes life-threatening disease by producing tetanus neurotoxin (TeNT), one of the most toxic protein substances. Toxicosis can be prevented and cured by administration of anti-TeNT neutralizing antibodies. Here, we identified a series of monoclonal antibodies (mAbs) derived from memory B cells of a healthy adult immunized with the C-terminal domain of TeNT (TeNT-Hc). Thirteen mAbs bound to both tetanus toxoid (TT) and TeNT-Hc, while two mAbs recognized only TT. VH3-23 was the most frequently used germline gene in these TT-binding mAbs, and the pairwise identity values of the VH gene sequences ranged from 27% to 69%. Three of these mAbs-T3, T7, and T9-6-completely protected mice from challenge with 2× LD50 of TeNT, and two (T2 and T18) significantly prolonged the survival time. The five neutralizing mAbs recognized distinct epitopes on TT, with binding affinities ranging from 0.123 to 11.9 nM. Our study provides promising therapeutic candidates for tetanus.


Subject(s)
Antibodies, Bacterial/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Clostridium tetani/immunology , Diphtheria-Tetanus Vaccine/administration & dosage , Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Immunogenicity, Vaccine , Tetanus Toxoid/administration & dosage , Tetanus/prevention & control , Animals , Antibodies, Bacterial/blood , Antibodies, Monoclonal/blood , Antibodies, Neutralizing/blood , Antibody Specificity , Clostridium tetani/pathogenicity , Disease Models, Animal , Epitopes , Female , Humans , Mice, Inbred BALB C , Tetanus/immunology , Tetanus/microbiology , Time Factors , Vaccination
11.
Emerg Microbes Infect ; 9(1): 1467-1469, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32552365

ABSTRACT

A maternal woman was positive for SARS-CoV-2 tested in throat swabs but negative tested in other body fluids, and she had IgG and IgA detected in breast milk. Her infant negative for SARS-CoV-2 at birth had elevated IgG in serum but quickly decayed. These findings suggest that breastfeeding might have the potential benefit to the neonates.


Subject(s)
Antibodies, Viral/analysis , Betacoronavirus/immunology , Coronavirus Infections/immunology , Milk, Human/immunology , Pneumonia, Viral/immunology , Pregnancy Complications, Infectious/virology , Adult , Antibodies, Viral/immunology , COVID-19 , China , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin G/analysis , Infant, Newborn , Milk, Human/virology , Pandemics , Pregnancy , Pregnancy Complications, Infectious/immunology , SARS-CoV-2
12.
Science ; 369(6504): 650-655, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32571838

ABSTRACT

Developing therapeutics against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from 10 convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. One mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2 but does not bind the RBD. We defined the epitope of 4A8 as the N-terminal domain (NTD) of the S protein by determining with cryo-eletron microscopy its structure in complex with the S protein to an overall resolution of 3.1 angstroms and local resolution of 3.3 angstroms for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adult , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Antigens, Viral/immunology , B-Lymphocytes/immunology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/therapy , Coronavirus Nucleocapsid Proteins , Cryoelectron Microscopy , Enzyme-Linked Immunosorbent Assay , Genes, Immunoglobulin Heavy Chain , Humans , Immunologic Memory , Middle Aged , Mutation , Nucleocapsid Proteins/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/therapy , Protein Domains , Protein Interaction Domains and Motifs/immunology , Receptors, Coronavirus , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Young Adult
13.
Emerg Infect Dis ; 26(7): 1583-1591, 2020 07.
Article in English | MEDLINE | ID: mdl-32275497

ABSTRACT

To determine distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards in Wuhan, China, we tested air and surface samples. Contamination was greater in intensive care units than general wards. Virus was widely distributed on floors, computer mice, trash cans, and sickbed handrails and was detected in air ≈4 m from patients.


Subject(s)
Air Microbiology , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Aerosols , COVID-19 , Hospitals , Humans , Intensive Care Units , Pandemics , SARS-CoV-2
14.
MAbs ; 12(1): 1742457, 2020.
Article in English | MEDLINE | ID: mdl-32213108

ABSTRACT

Ebola virus (EBOV) can cause severe hemorrhagic fever in humans, and no approved treatment is currently available. Although several antibodies have achieved good protection in animal models, the potential emerging isolates of ebolavirus and the unknown effects of experimental antibodies in humans underscore the need to develop additional antibodies to address the threat of Ebola. Here, we isolated a series of memory B cell-derived monoclonal antibodies from healthy Chinese adults vaccinated with Ad5-EBOV. These antibodies were encoded by diverse germline genes and had high levels of somatic hypermutation. Most antibodies were cross-reactive and could bind at least two ebolavirus glycoproteins (GPs). Seven neutralizing antibodies were identified using HIV-EBOV GP-Luc pseudovirus, and they effectively neutralized authentic EBOV. In particular, monoclonal antibody 2G1 exhibited potent cross-neutralization against HIV-EBOV/SUDV/BDBV GP-Luc bearing different ebolavirus GPs. We used truncated GPs, competition assays, and software prediction to analyze seven neutralizing antibodies, which bound four different epitopes on GP. Importantly, three of these antibodies provided complete protection in mice when administered one day post-infection. Our study expands the list of candidate antibodies and the options for successfully treating ebolavirus infection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Ebola Vaccines/immunology , Ebolavirus/immunology , Animals , Female , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Male , Mice
15.
Viruses ; 12(3)2020 02 27.
Article in English | MEDLINE | ID: mdl-32120864

ABSTRACT

The Rift Valley fever virus (RVFV) is an arthropod-borne virus that can not only cause severe disease in domestic animals but also in humans. However, the licensed vaccines or available therapeutics for humans do not exist. Here, we report two Gn-specific neutralizing antibodies (NAbs), isolated from a rhesus monkey immunized with recombinant human adenoviruses type 4 expressing Rift Valley fever virus Gn and Gc protein (rHAdV4-GnGcopt). The two NAbs were both able to protect host cells from RVFV infection. The interactions between NAbs and Gn were then characterized to demonstrate that these two NAbs might preclude RVFV glycoprotein rearrangement, hindering the exposure of fusion loops in Gc to endosomal membranes after the virus invades the host cell. The target region for the two NAbs is located in the Gn domain III, implying that Gn is a desired target for developing vaccines and neutralizing antibodies against RVFV.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Rift Valley Fever/immunology , Rift Valley fever virus/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Cell Line , Enzyme-Linked Immunosorbent Assay , Epitopes , Humans , Immunization , Macaca mulatta , Models, Molecular , Molecular Conformation , Neutralization Tests , Protein Binding , Rift Valley Fever/virology , Structure-Activity Relationship , Viral Envelope Proteins/chemistry
16.
Sheng Wu Gong Cheng Xue Bao ; 34(6): 993-1001, 2018 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-29943545

ABSTRACT

Given the increasing exploitation of antibodies in different contexts such as molecular diagnostics and therapeutics, it would be beneficial to unravel properties of antigen-antibody interaction with modeling of computational protein-protein docking, especially, in the absence of a cocrystal structure. However, obtaining a native-like antigen-antibody structure remains challenging due in part to failing to reliably discriminate accurate from inaccurate structures among tens of thousands of decoys after computational docking with existing scoring function. We hypothesized that some important physicochemical and energetic features could be used to describe antigen-antibody interfaces and identify native-like antigen-antibody structure. We prepared a dataset, a subset of Protein-Protein Docking Benchmark Version 4.0, comprising 37 nonredundant 3D structures of antigen-antibody complexes, and used it to train and test multivariate logistic regression equation which took several important physicochemical and energetic features of decoys as dependent variables. Our results indicate that the ability to identify native-like structures of our method is superior to ZRANK and ZDOCK score for the subset of antigen-antibody complexes. And then, we use our method in workflow of predicting epitope of anti-Ebola glycoprotein monoclonal antibody-4G7 and identify three accurate residues in its epitope.


Subject(s)
Antibodies/chemistry , Antigens/chemistry , Protein Interaction Mapping , Regression Analysis , Algorithms , Epitopes , Humans , Protein Binding , Protein Conformation
17.
PLoS One ; 12(5): e0177012, 2017.
Article in English | MEDLINE | ID: mdl-28486528

ABSTRACT

Yersinia pestis (Y. pestis) has caused an alarming number of deaths throughout recorded human history, and novel prophylactics and therapeutics are necessary given its potential as a bioweapon. Only one monoclonal antibody has been identified to date that provides complete protection against Y. pestis. Here, we describe a second novel murine monoclonal antibody (F2H5) that provided complete protection against Y. pestis 141 infection when administered prophylactically to Balb/c mice (100 µg intravenously). We humanized F2H5, characterized its ability to bind to the Y. pestis F1 protein and further characterized the neutralizing epitope using computational and experimental approaches. While Western blot results suggested a linear epitope, peptide mapping using ELISA failed to identify an epitope, suggesting a conformational epitope instead. We adopted a computational approach based on Residue Contact Frequency to predict the site of antigen-antibody interaction and defined the F2H5/F1 binding site computationally. Based on computational approach, we determined that residues G104E105N106 in F1 were critical to F2H5 binding and that CDRH2 and CDRH3 of F2H5 interacted with F1. Our results show that combining computational approach and experimental approach can effectively identify epitopes.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Yersinia pestis/immunology , Humans
18.
Toxins (Basel) ; 8(9)2016 09 11.
Article in English | MEDLINE | ID: mdl-27626445

ABSTRACT

Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.


Subject(s)
Antibodies, Neutralizing/pharmacology , Cell Surface Display Techniques , Peptide Fragments/immunology , Peptide Library , Single-Chain Antibodies/pharmacology , Tetanus Toxin/immunology , Tetanus/prevention & control , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibody Affinity , Binding Sites, Antibody , Binding, Competitive , Disease Models, Animal , Epitopes , Female , Humans , Membrane Proteins/metabolism , Mice, Inbred BALB C , Neurons/immunology , Neurons/metabolism , PC12 Cells , Peptide Fragments/metabolism , Protein Binding , Rats , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism , Tetanus/immunology , Tetanus/metabolism , Tetanus Toxin/metabolism , Time Factors
19.
Biochem Biophys Res Commun ; 473(1): 23-28, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-26979754

ABSTRACT

High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies.


Subject(s)
Antibodies, Monoclonal/chemistry , Amino Acid Sequence , Anthrax Vaccines/chemistry , Antigens/chemistry , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay , False Positive Reactions , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Variable Region/chemistry , Immunoglobulins/chemistry , Male , Molecular Sequence Data , Vaccination
20.
Sheng Wu Gong Cheng Xue Bao ; 32(11): 1590-1599, 2016 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-29034628

ABSTRACT

Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal, Humanized/immunology , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Animals , Anthrax , Antibodies, Neutralizing/immunology , Bacillus anthracis , Epitopes , Humans , Mice , Mice, Transgenic , Respiratory Tract Infections
SELECTION OF CITATIONS
SEARCH DETAIL