Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Eur Spine J ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367177

ABSTRACT

PURPOSE: To compare vertebroplasty (VP) and kyphoplasty (KP) with a titanium implantable vertebral augmentation device (TIVAD) in symptomatic subsequent vertebral compression fracture (SVCF) incidence among osteoporotic vertebral compression fracture (OVCF) patients stratified by age and sex. METHODS: This retrospective cohort study involved OVCF patients aged ≥ 50, who underwent KP with TIVAD or VP in our hospital from 2014 to 2019. Subgroup analysis was conducted to evaluate the efficacy of KP with TIVAD and VP in patients stratified by age and sex. RESULTS: The study included 472 patients (VP group: 303; TIVAD group: 169). SVCF incidence rates were 15.2% for VP group and 14.8% for TIVAD group (P = 0.87). In subgroup analysis, TIVAD group showed significantly lower SVCF incidence than VP group in women aged 50-70 (2.1% vs 14.3%; P = 0.03) and had significantly higher SVCF incidence than VP group in women aged > 70 (24.2% vs 13.1%; P = 0.02). In men, adjacent SVCF incidence was significantly lower in TIVAD group than VP group (0% vs 14.1%; P = 0.03). CONCLUSION: Compared to VP, TIVAD is associated with lower symptomatic SVCF rate in men and younger women aged 50-70 but not in older women aged > 70. Age and gender may influence SVCF incidence. LEVEL OF EVIDENCE: Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding.

2.
J Biomed Sci ; 31(1): 91, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39285280

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) causes axon tearing and synapse degradation, resulting in multiple neurological dysfunctions and exacerbation of early neurodegeneration; the repair of axonal and synaptic structures is critical for restoring neuronal function. C-C Motif Chemokine Ligand 5 (CCL5) shows many neuroprotective activities. METHOD: A close-head weight-drop system was used to induce mild brain trauma in C57BL/6 (wild-type, WT) and CCL5 knockout (CCL5-KO) mice. The mNSS score, rotarod, beam walking, and sticker removal tests were used to assay neurological function after mTBI in different groups of mice. The restoration of motor and sensory functions was impaired in CCL5-KO mice after one month of injury, with swelling of axons and synapses from Golgi staining and reduced synaptic proteins-synaptophysin and PSD95. Administration of recombinant CCL5 (Pre-treatment: 300 pg/g once before injury; or post-treatment: 30 pg/g every 2 days, since 3 days after injury for 1 month) through intranasal delivery into mouse brain improved the motor and sensory neurological dysfunctions in CCL5-KO TBI mice. RESULTS: Proteomic analysis using LC-MS/MS identified that the "Nervous system development and function"-related proteins, including axonogenesis, synaptogenesis, and myelination signaling pathways, were reduced in injured cortex of CCL5-KO mice; both pre-treatment and post-treatment with CCL5 augmented those pathways. Immunostaining and western blot analysis confirmed axonogenesis and synaptogenesis related Semaphorin, Ephrin, p70S6/mTOR signaling, and myelination-related Neuregulin/ErbB and FGF/FAK signaling pathways were up-regulated in the cortical tissue by CCL5 after brain injury. We also noticed cortex redevelopment after long-term administration of CCL5 after brain injury with increased Reelin positive Cajal-Rerzius Cells and CXCR4 expression. CCL5 enhanced the growth of cone filopodia in a primary neuron culture system; blocking CCL5's receptor CCR5 by Maraviroc reduced the intensity of filopodia in growth cone and also CCL5 mediated mTOR and Rho signalling activation. Inhibiting mTOR and Rho signaling abolished CCL5 induced growth cone formation. CONCLUSIONS: CCL5 plays a critical role in starting the intrinsic neuronal regeneration system following TBI, which includes growth cone formation, axonogenesis and synaptogensis, remyelination, and the subsequent proper wiring of cortical circuits. Our study underscores the potential of CCL5 as a robust therapeutic stratagem in treating axonal injury and degeneration during the chronic phase after mild brain injury.


Subject(s)
Axons , Chemokine CCL5 , Mice, Inbred C57BL , Mice, Knockout , Animals , Mice , Chemokine CCL5/metabolism , Axons/metabolism , Axons/physiology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , Male , Neurons/metabolism , Brain Injuries/metabolism , Neurogenesis
3.
J Exp Clin Cancer Res ; 43(1): 218, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103871

ABSTRACT

INTRODUCTION: Glioblastoma (GBM) poses a significant challenge in oncology, with median survival times barely extending beyond a year due to resistance to standard therapies like temozolomide (TMZ). This study introduces a novel therapeutic strategy combining progesterone (Prog) and abiraterone (Abi) aimed at enhancing GBM treatment efficacy by modulating the tumor microenvironment and augmenting NK cell-mediated immunity. METHODS: We employed in vitro and in vivo GBM models to assess the effects of Prog and Abi on cell viability, proliferation, apoptosis, and the immune microenvironment. Techniques included cell viability assays, Glo-caspase 3/7 apoptosis assays, RNA-seq and qPCR for gene expression, Seahorse analysis for mitochondrial function, HPLC-MS for metabolomics analysis, and immune analysis by flow cytometry to quantify NK cell infiltration. RESULTS: Prog significantly reduced the IC50 of Abi in TMZ-resistant GBM cell, suggesting the enhanced cytotoxicity. Treatment induced greater apoptosis than either agent alone, suppressed tumor growth, and prolonged survival in mouse models. Notably, there was an increase in CD3-/CD19-/CD56+/NK1.1+ NK cell infiltration in treated tumors, indicating a shift towards an anti-tumor immune microenvironment. The combination therapy also resulted in a reduction of MGMT expression and a suppression of mitochondrial respiration and glycolysis in GBM cells. CONCLUSION: The combination of Prog and Abi represents a promising therapeutic approach for GBM, showing potential in suppressing tumor growth, extending survival, and modulating the immune microenvironment. These findings warrant further exploration into the clinical applicability of this strategy to improve outcomes for GBM patients.


Subject(s)
Glioblastoma , Killer Cells, Natural , Progesterone , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/immunology , Humans , Mice , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Progesterone/pharmacology , Androstenes/pharmacology , Androstenes/therapeutic use , Cell Line, Tumor , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Tumor Microenvironment/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Disease Models, Animal
4.
Transl Stroke Res ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028413

ABSTRACT

Ischemic stroke can lead to systemic inflammation, which can activate peripheral immune cells, causing neuroinflammation and brain injury. Meningeal lymphatics play a crucial role in transporting solutes and immune cells out of the brain and draining them into cervical lymph nodes (CLNs). However, the role of meningeal lymphatics in regulating systemic inflammation during the reperfusion stage after ischemia is not well understood. In this study, we demonstrated that brain infarct size, neuronal loss, and the effector function of inflammatory macrophage subsets were reduced after ischemia-reperfusion and disruption of meningeal lymphatics. Spatial memory function was improved in the late stage of ischemic stroke following meningeal lymphatic disruption. Brain-infiltrating immune cells, including neutrophils, monocytes, and T and natural killer cells, were reduced after cerebral ischemia-reperfusion and meningeal lymphatic disruption. Single-cell RNA sequencing analysis revealed that meningeal lymphatic disruption reprogrammed the transcriptome profile related to chemotaxis and leukocyte migration in CLN lymphatic endothelial cells (LECs), and it also decreased chemotactic CCN1 expression in floor LECs. Replenishment of CCN1 through intraventricular injection increased brain infarct size and neuronal loss, while restoring numbers of macrophages/microglia in the brains of meningeal lymphatic-disrupted mice after ischemic stroke. Blocking CCN1 in cerebrospinal fluid reduced brain infarcts and improves spatial memory function after ischemia-reperfusion injury. In summary, this study indicates that CCN1-mediated detrimental inflammation was alleviated after cerebral ischemia-reperfusion injury and meningeal lymphatic disruption. CCN1 represents a novel therapeutic target for inhibiting systemic inflammation in the brain-CLN axis after ischemia-reperfusion injury.

6.
Cell Transplant ; 33: 9636897241237049, 2024.
Article in English | MEDLINE | ID: mdl-38483119

ABSTRACT

Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.


Subject(s)
Brain Injuries, Traumatic , Neuroinflammatory Diseases , Thalidomide/analogs & derivatives , Rats , Animals , Rats, Sprague-Dawley , Reactive Oxygen Species , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Oxidative Stress , Cytokines/metabolism , Cerebral Cortex/metabolism , Disease Models, Animal
7.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38311053

ABSTRACT

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Subject(s)
Androstenes , Brain Neoplasms , Glioblastoma , Steroid 17-alpha-Hydroxylase , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Histone Deacetylase 6/genetics , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Oxidative Stress , Temozolomide/pharmacology , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
8.
World Neurosurg ; 183: e276-e281, 2024 03.
Article in English | MEDLINE | ID: mdl-38128758

ABSTRACT

BACKGROUND: Though previous studies have documented various clinical outcomes after cervical arthroplasty for degenerative cervical disc disease, none of them reported the impact of cervical arthroplasty on severe cervical disc degeneration (CDD). METHODS: This retrospective cohort study included severe 40 CDD (C3-C7) patients who underwent single-level cervical arthroplasty using ProDisc-C between January 2017 and December 2019. After surgical intervention, the range of motion (ROM) was determined, whereas clinical outcomes were measured in terms of the Visual Analogue Scale (VAS) and Neck Disability Index (NDI) to evaluate neck pain and disability, respectively. RESULTS: Compared to the mean preoperative ROM (6.57 ± 4.85°), the cervical dynamic ROM was increased 3 months after cervical arthroplasty, and the increment was maintained for at least 1 year. The increased ROM is attributed to the extension and not flexion components. The mean preoperative ROM of 6.57 ± 4.85° significantly increased to 11.67 ± 4.98° (P = 0.0005), 10.05 ± 5.18° (P = 0.0426) and 10.46 ± 4.73° (P = 0.0247) after 3 months, 6 months and 1 year, respectively. The extension ROM also revealed a similar trend. VAS for neck and arm decreased from 7.4 and 6.6 to 1.4 and 1.2, respectively. Consistently, the preoperative mean Neck Disability Index (NDI) score of 27.6 decreased to 14.6. We recorded a case of device subsidence, but without extrusion. CONCLUSIONS: Cervical arthroplasty can improve clinical outcomes and restore ROM in severe CDD patients.


Subject(s)
Intervertebral Disc Degeneration , Humans , Follow-Up Studies , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/surgery , Retrospective Studies , Treatment Outcome , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Arthroplasty
9.
Neurotrauma Rep ; 4(1): 751-760, 2023.
Article in English | MEDLINE | ID: mdl-38028275

ABSTRACT

Mild traumatic brain injury (mTBI) is a prevalent health concern with variable recovery trajectories, necessitating reliable prognostic markers. Insulin-like growth factor 1 (IGF-1) emerges as a potential candidate because of its role in cellular growth, repair, and neuroprotection. However, limited studies investigate IGF-1 as a prognostic marker in mTBI patients. This study aimed to explore the correlation of IGF-1 with cognitive functions assessed using the Wisconsin Card Sorting Test (WCST) in mTBI patients. We analyzed data from 295 mTBI and 200 healthy control participants, assessing demographic characteristics, injury causes, and IGF-1 levels. Cognitive functions were evaluated using the WCST. Correlation analyses and regression models were used to investigate the associations between IGF-1 levels, demographic factors, and WCST scores. Significant differences were observed between mTBI and control groups in the proportion of females and average education years. Falls and traffic accidents were identified as the primary causes of mTBI. The mTBI group demonstrated worse cognitive outcomes on the WCST, except for the "Learning to Learn" index. Correlation analyses revealed significant relationships between IGF-1 levels, demographic factors, and specific WCST scores. Regression models demonstrated that IGF-1, age, and education years significantly influenced various WCST scores, suggesting their roles as potential prognostic markers for cognitive outcomes in mTBI patients. We provide valuable insights into the potential correlation of IGF-1 with cognitive functions in mTBI patients, particularly in tasks requiring cognitive flexibility and problem solving.

10.
Transl Stroke Res ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37783839

ABSTRACT

Blood-brain barrier (BBB) disruption is a prominent pathophysiological mechanism in stroke. Transplantation of mesenchymal stem cells (MSCs) preserves BBB integrity following ischemic stroke. Fibroblast growth factor 21 (FGF21) has been shown to be a potent neuroprotective agent that reduces neuroinflammation and protects against BBB leakage. In this study, we assessed the effects of transplantation of MSCs overexpressing FGF21 (MSCs-FGF21) on ischemia-induced neurological deficits and BBB breakdown. MSCs-FGF21 was injected into the rat brain via the intracerebroventricular route 24 h after middle cerebral artery occlusion (MCAO) surgery. The behavioral performance was assessed using modified neurological severity scores and Y-maze tests. BBB disruption was measured using Evans blue staining, IgG extravasation, and brain water content. The levels of tight junction proteins, aquaporin 4, and neuroinflammatory markers were analyzed by western blotting and immunohistochemistry. The activity of matrix metalloproteinase-9 (MMP-9) was determined using gelatin zymography. At day-5 after MCAO surgery, intraventricular injection of MSCs-FGF21 was found to significantly mitigate the neurological deficits and BBB disruption. The MCAO-induced loss of tight junction proteins, including ZO-1, occludin, and claudin-5, and upregulation of the edema inducer, aquaporin 4, were also remarkably inhibited. In addition, brain infarct volume, pro-inflammatory protein expression, and MMP-9 activation were effectively suppressed. These MCAO-induced changes were only marginally improved by treatment with MSCs-mCherry, which did not overexpress FGF21. Overexpression of FGF21 dramatically improved the therapeutic efficacy of MSCs in treating ischemic stroke. Given its multiple benefits and long therapeutic window, MSC-FGF21 therapy may be a promising treatment strategy for ischemic stroke.

11.
Diagnostics (Basel) ; 13(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37761311

ABSTRACT

Postoperative adhesive arachnoiditis is an inflammatory response of the spinal leptomeninges that occurs after surgery and results in scar formation in the avascular nature of the arachnoid layer. Clinical manifestations of postoperative adhesive arachnoiditis include pain, sensory deficits, motor dysfunction, reflex abnormalities, and bladder or bowel impairment. In magnetic resonance imaging scans, signs of postoperative adhesive arachnoiditis can vary; however, some indicators can assist surgeons in locating the lesion accurately and, thus, in planning effective surgical interventions. This paper reports the case of a 37-year-old man with postoperative adhesive arachnoiditis after two surgeries for Chiari I malformation. This case illustrates the progressive development of the "delta cord sign", which refers to the formation of a thick arachnoid band causing the spinal cord to adopt a triangular shape in the axial view. This phenomenon is accompanied by the sequential occurrence of syringomyelia. During intraoperative examination, we identified the presence of the delta cord sign, which had been formed by an arachnoid scar that tethered the dorsal spinal cord to the dura. This discovery enabled us to precisely pinpoint the location of the arachnoid scar and thus provided us with guidance that enabled us to avoid unnecessary exploration of unaffected structures during the procedure. Other localization signs were also reviewed.

12.
Diagnostics (Basel) ; 13(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37370919

ABSTRACT

Although a few large-scale studies have investigated multilevel anterior cervical discectomy and fusion (ACDF) and laminoplasty (LAMP) and their related complications for cervical spondylotic myelopathy (CSM), the optimal surgical intervention remains controversial. Therefore, we compared their 30 days of postoperative complications. Through the 2010-2019 ACS NSQIP Participant Use Data Files, we estimated the risk of serious morbidity, reoperation, readmission, mortality, and other postoperative complications. Initially, propensity score matching (PSM) of the preoperative characteristics of both groups was performed for further analysis. Multivariable logistic regression analysis provided OR and 95% CI for comparative complications. After PSM, 621 pairs of cohorts were generated for both groups. Increased frequency of postoperative complications was observed in the LAMP group, especially for surgical wound infection, no matter whether superficial (ACDF/LAMP = 0%/1.13%, p = 0.0154) or deep wound infection (ACDF/LAMP = 0%/0.97%, p = 0.0309). The mean length of total hospital stays (ACDF/LAMP = 2.25/3.11, p < 0.0001) and days from operation to discharge (ACDF/LAMP = 2.12/3.08, p < 0.0001) were longer, while the hospitalization rate for over 30 days (ACDF/LAMP = 4.67%/7.41%, p = 0.0429) and unplanned reoperation (ACDF/LAMP = 6.12%/9.34%, p = 0.0336) were higher in LAMP. Results also indicated congestive heart failure as a risk factor (adjusted OR = 123.402, p = 0.0002). Conclusively, multilevel ACDF may be a safer surgical approach than LAMP for CSM in terms of perioperative morbidities, including surgical wound infection, prolonged hospitalization, and unplanned reoperation. However, these approaches showed no significant differences in systemic complications and perioperative mortality.

13.
Front Cell Neurosci ; 17: 1170251, 2023.
Article in English | MEDLINE | ID: mdl-37252187

ABSTRACT

Background and purpose: Intracerebral hemorrhage (ICH) enhances neurogenesis in the subventricular zone (SVZ); however, the mechanism is not fully understood. We investigated the role of brain-derived neurotrophic factor (BDNF) in post-ICH neurogenesis in a rodent model and in patients with ICH using cerebrospinal fluid (CSF). Methods: A rat model of ICH was constructed via stereotaxic injection of collagenase into the left striatum. Patients with ICH receiving an external ventricular drain were prospectively enrolled. CSF was collected from rats and patients at different post-ICH times. Primary cultured rat neural stem cells (NSCs) were treated with CSF with or without BDNF-neutralized antibody. Immunohistochemistry and immunocytochemistry were used to detect NSC proliferation and differentiation. The BDNF concentration in CSF was quantified using enzyme-linked immunosorbent assays (ELISA). Results: In the rat model of ICH, the percentage of proliferating NSCs and neuroblasts in SVZ was elevated in bilateral hemispheres. The cultured rat NSCs treated with CSF from both rats and patients showed an increased capacity for proliferation and differentiation toward neuroblasts. BDNF concentration was higher in CSF collected from rats and patients with ICH than in controls. Blocking BDNF decreased the above-noted promotion of proliferation and differentiation of cultured NSCs by CSF treatment. In patients with ICH, the BDNF concentration in CSF and the neurogenesis-promoting capacity of post-ICH CSF correlated positively with ICH volume. Conclusion: BDNF in CSF contributes to post-ICH neurogenesis, including NSC proliferation and differentiation toward neuroblasts in a rat model and patients with ICH.

14.
Prog Neurobiol ; 226: 102464, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169275

ABSTRACT

The pathogenetic mechanism of persistent post-concussive symptoms (PCS) following concussion remains unclear. Thalamic damage is known to play a role in PCS prolongation while the evidence and biomarkers that trigger persistent PCS have never been elucidated. We collected longitudinal neuroimaging and behavior data from patients and rodents after concussion, complemented with rodents' histological staining data, to unravel the early biomarkers of persistent PCS. Diffusion tensor imaging (DTI) were acquired to investigated the thalamic damage, while quantitative thalamocortical coherence was derived through resting-state functional MRI for evaluating thalamocortical functioning and predicting long-term behavioral outcome. Patients with prolonged symptoms showed abnormal DTI-derived indices at the boundaries of bilateral thalami (peri-thalamic regions). Both patients and rats with persistent symptoms demonstrated enhanced thalamocortical coherence between different thalamocortical circuits, which disrupted thalamocortical multifunctionality. In rodents, the persistent DTI abnormalities were validated in thalamic reticular nucleus (TRN) through immunohistochemistry, and correlated with enhanced thalamocortical coherence. Strong predictive power of these coherence biomarkers for long-term PCS was also validated using another patient cohort. Postconcussive events may begin with persistent TRN injury, followed by disrupted thalamocortical coherence and prolonged PCS. Functional MRI-based coherence measures can be surrogate biomarkers for early prediction of long-term PCS.


Subject(s)
Post-Concussion Syndrome , Rats , Animals , Post-Concussion Syndrome/diagnostic imaging , Post-Concussion Syndrome/pathology , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Thalamus/diagnostic imaging , Biomarkers
15.
J Biomed Sci ; 30(1): 16, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36872339

ABSTRACT

BACKGROUND: Quelling microglial-induced excessive neuroinflammation is a potential treatment strategy across neurological disorders, including traumatic brain injury (TBI), and can be achieved by thalidomide-like drugs albeit this approved drug class is compromised by potential teratogenicity. Tetrafluorobornylphthalimide (TFBP) and tetrafluoronorbornylphthalimide (TFNBP) were generated to retain the core phthalimide structure of thalidomide immunomodulatory imide drug (IMiD) class. However, the classical glutarimide ring was replaced by a bridged ring structure. TFBP/TFNBP were hence designed to retain beneficial anti-inflammatory properties of IMiDs but, importantly, hinder cereblon binding that underlies the adverse action of thalidomide-like drugs. METHODS: TFBP/TFNBP were synthesized and evaluated for cereblon binding and anti-inflammatory actions in human and rodent cell cultures. Teratogenic potential was assessed in chicken embryos, and in vivo anti-inflammatory actions in rodents challenged with either lipopolysaccharide (LPS) or controlled cortical impact (CCI) moderate traumatic brain injury (TBI). Molecular modeling was performed to provide insight into drug/cereblon binding interactions. RESULTS: TFBP/TFNBP reduced markers of inflammation in mouse macrophage-like RAW264.7 cell cultures and in rodents challenged with LPS, lowering proinflammatory cytokines. Binding studies demonstrated minimal interaction with cereblon, with no resulting degradation of teratogenicity-associated transcription factor SALL4 or of teratogenicity in chicken embryo assays. To evaluate the biological relevance of its anti-inflammatory actions, two doses of TFBP were administered to mice at 1 and 24 h post-injury following CCI TBI. Compared to vehicle treatment, TFBP reduced TBI lesion size together with TBI-induction of an activated microglial phenotype, as evaluated by immunohistochemistry 2-weeks post-injury. Behavioral evaluations at 1- and 2-weeks post-injury demonstrated TFBP provided more rapid recovery of TBI-induced motor coordination and balance impairments, versus vehicle treated mice. CONCLUSION: TFBP and TFNBP represent a new class of thalidomide-like IMiDs that lower proinflammatory cytokine generation but lack binding to cereblon, the main teratogenicity-associated mechanism. This aspect makes TFBP and TFNBP potentially safer than classic IMiDs for clinical use. TFBP provides a strategy to mitigate excessive neuroinflammation associated with moderate severity TBI to, thereby, improve behavioral outcome measures and warrants further investigation in neurological disorders involving a neuroinflammatory component.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Chick Embryo , Humans , Animals , Mice , Thalidomide , Neuroinflammatory Diseases , Immunomodulating Agents , Lipopolysaccharides , Inflammation
16.
Eur Spine J ; 31(9): 2439-2447, 2022 09.
Article in English | MEDLINE | ID: mdl-35816197

ABSTRACT

BACKGROUND: Symptomatic subsequent vertebral compression fracture (VCF; SVCF) is a common complication associated with poor outcomes. Accumulating evidence shows that demographic factors and incidences of symptomatic SVCFs differ during different periods after the primary vertebroplasty (VP). PURPOSE: To investigate the incidence and demographic factors of symptomatic SVCFs after the primary VP in different periods using registry data in the Taiwan National Health Insurance Research Database. METHODS: This retrospective cohort study included 28,343 patients aged ≥ 50 years with painful VCF treated with VP from 2002 to 2016. Symptomatic SVCF was defined as SVCF requiring another VP or re-admission. During the 2-year follow-up, 1955 patients received subsequent VP while 1,407 were readmitted. Cox proportional hazard models were used to compare the risks of subsequent VP or readmission. RESULTS: The cumulative incident rate of subsequent VP and re-hospitalization was 0.87 [95% confidence interval (CI), 0.82 ~ 0.92] and 0.62 (95% CI, 0.58 ~ 0.66) per 100 person-months, respectively, within the first 6 months after the primary VP, and it decreased over time. A multiple Cox regression model showed that age, osteopenia or osteoporosis, Charlson comorbidity index (CCI) were significant independent risk factors of subsequent VP or readmission within the first 6 months. CONCLUSIONS: This study demonstrated that the incidence of symptomatic SVCF peaked in the first 6 months after the primary VP. Age, osteoporosis or osteopenia, and CCI were determined to be risk factors in the first 6 months, but only osteoporosis or osteopenia and CCI were risk factors thereafter.


Subject(s)
Fractures, Compression , Osteoporosis , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Fractures, Compression/epidemiology , Fractures, Compression/surgery , Humans , Incidence , Infant , Osteoporosis/complications , Osteoporotic Fractures/complications , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/surgery , Retrospective Studies , Risk Factors , Spinal Fractures/surgery , Vertebroplasty/adverse effects
17.
Pharmaceutics ; 14(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35631536

ABSTRACT

(1) Background: An important concomitant of stroke is neuroinflammation. Pomalidomide, a clinically available immunomodulatory imide drug (IMiD) used in cancer therapy, lowers TNF-α generation and thus has potent anti-inflammatory actions. Well-tolerated analogs may provide a stroke treatment and allow evaluation of the role of neuroinflammation in the ischemic brain. (2) Methods: Two novel pomalidomide derivatives, 3,6'-dithiopomalidomide (3,6'-DP) and 1,6'-dithiopomalidomide (1,6'-DP), were evaluated alongside pomalidomide in a rat middle cerebral artery occlusion (MCAo) stroke model, and their anti-inflammatory actions were characterized. (3) Results: Post-MCAo administration of all drugs lowered pro-inflammatory TNF-α and IL1-ß levels, and reduced stroke-induced postural asymmetry and infarct size. Whereas 3,6'- and 1,6'-DP, like pomalidomide, potently bound to cereblon in cellular studies, 3,6'-DP did not lower Ikaros, Aiolos or SALL4 levels-critical intermediates mediating the anticancer/teratogenic actions of pomalidomide and IMiDs. 3,6'-DP and 1,6'-DP lacked activity in mammalian chromosome aberration, AMES and hERG channel assays -critical FDA regulatory tests. Finally, 3,6'- and 1,6'-DP mitigated inflammation across rat primary dopaminergic neuron and microglia mixed cultures challenged with α-synuclein and mouse LPS-challenged RAW 264.7 cells. (4) Conclusion: Neuroinflammation mediated via TNF-α plays a key role in stroke outcome, and 3,6'-DP and 1,6'-DP may prove valuable as stroke therapies and thus warrant further preclinical development.

18.
J Pers Med ; 12(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35207684

ABSTRACT

Concussion, also known as mild traumatic brain injury (mTBI), commonly causes transient neurocognitive symptoms, but in some cases, it causes cognitive impairment, including working memory (WM) deficit, which can be long-lasting and impede a patient's return to work. The predictors of long-term cognitive outcomes following mTBI remain unclear, because abnormality is often absent in structural imaging findings. Previous studies have demonstrated that WM functional activity estimated from functional magnetic resonance imaging (fMRI) has a high sensitivity to postconcussion WM deficits and may be used to not only evaluate but guide treatment strategies, especially targeting brain areas involved in postconcussion cognitive decline. The purpose of the study was to determine whether machine learning-based models using fMRI biomarkers and demographic or neuropsychological measures at the baseline could effectively predict the 1-year cognitive outcomes of concussion. We conducted a prospective, observational study of patients with mTBI who were compared with demographically matched healthy controls enrolled between September 2015 and August 2020. Baseline assessments were collected within the first week of injury, and follow-ups were conducted at 6 weeks, 3 months, 6 months, and 1 year. Potential demographic, neuropsychological, and fMRI features were selected according to their significance of correlation with the estimated changes in WM ability. The support vector machine classifier was trained using these potential features and estimated changes in WM between the predefined time periods. Patients demonstrated significant cognitive recovery at the third month, followed by worsened performance after 6 months, which persisted until 1 year after a concussion. Approximately half of the patients experienced prolonged cognitive impairment at the 1-year follow up. Satisfactory predictions were achieved for patients whose WM function did not recover at 3 months (accuracy = 87.5%), 6 months (accuracy = 83.3%), and 1 year (accuracy = 83.3%) and performed worse at the 1-year follow-up compared to the baseline assessment (accuracy = 83.3%). This study demonstrated the feasibility of personalized prediction for long-term postconcussive WM outcomes based on baseline fMRI and demographic features, opening a new avenue for early rehabilitation intervention in selected individuals with possible poor long-term cognitive outcomes.

19.
Clin Nucl Med ; 47(3): 201-208, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35081059

ABSTRACT

OBJECTIVES: Neuroimaging studies in the past 20 years have documented an age-related decline in striatal dopamine transporters (DATs), which is a marker of dopaminergic neurodegeneration; however, concerns about ethnic variations in the decline in DAT with age have not been addressed. The purpose of this study was to assess the rate of striatal DAT loss in healthy Taiwanese adults using kit-based 99mTc-TRODAT-1, a radioligand for DAT SPECT. PATIENTS AND METHODS: Fifty healthy subjects (mean age ± SD, 63 ± 12 years; range, 30-80 years) were studied. 99mTc-TRODAT-1 was prepared from a lyophilized kit. Brain DAT SPECT imaging was acquired between 165 and 195 minutes postinjection (~740 MBq or 20 mCi) using a dual-head camera equipped with fan-beam collimators (Helix SPX; GE). Specific uptake in the striatum (ST), caudate nucleus (CA), and putamen (PU) were calculated from reconstructed transaxial slices at the level of maximal striatal activity. Occipital cortices were used as reference areas. Data were presented as specific binding ratios. RESULTS: Age had a significant moderate to large negative effect on striatal DAT, which declined by -25.7% ± 6.10% between the ages of 30 and 80 years, equivalent to 6.4% loss per decade. The rates of decline in the CA and PU were 6.9% and 7.3% per decade, respectively. CONCLUSIONS: This study suggests ethnic variations may not significantly affect the age-related decline in DAT. The data generated in this study could also be used as a reference to estimate DAT loss/occupancy in patients with DAT-related diseases.


Subject(s)
Dopamine , Tropanes , Adult , Aged , Aged, 80 and over , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Middle Aged , Organotechnetium Compounds , Tomography, Emission-Computed, Single-Photon
20.
Brain Sci ; 11(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34827369

ABSTRACT

To identify a screening tool for poor self-reported sleep quality at 12 weeks according to non-invasive measurements and patients' characteristics in the first week after mild traumatic brain injury (mTBI), data from 473 mTBI participants were collected and follow-ups were performed at 12 weeks. Patients with previous poor self-reported sleep quality prior to the injury were excluded. Patients were then divided into two groups at 12 weeks according to the Pittsburgh Sleep Quality Index based on whether or not they experienced poor sleep quality. The analysis was performed on personal profiles and heart rate variability (HRV) for 1 week. After analyzing the non-invasive measurements and characteristics of mTBI patients who did not complain of poor sleep quality, several factors were found to be relevant to the delayed onset of poor sleep quality, including age, gender, and HRV measurements. The HRV-age-gender (HAG) index was proposed and found to have 100% sensitivity (cut-off, 7; specificity, 0.537) to predicting whether the patient will experience poor sleep quality after mTBI at the 12-week follow-up. The HAG index helps us to identify patients with mTBI who have no sleep quality complaints but are prone to developing poor self-reported sleep quality. Additional interventions to improve sleep quality would be important for these particular patients in the future.

SELECTION OF CITATIONS
SEARCH DETAIL