Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 67
1.
Lancet Planet Health ; 8 Suppl 1: S18, 2024 04.
Article En | MEDLINE | ID: mdl-38632913

BACKGROUND: Given the urgency of transitioning towards sustainable nutrition, dietary shifts that provide co-benefits to human health and the environment are imperative. There is currently no database of the environmental impacts of foods that reflects Canada's unique geographical and agri-climatic context and regional inputs and emissions. To determine sustainable diets, harmonising nutritional considerations with environmental impacts is also essential for an equitable comparison of foods. We aimed to develop a Canadian Food Life Cycle Inventory database and a multidimensional index to enable a joint assessment of the health and environmental impacts of foods in Canada. METHODS: The Canadian Food Life Cycle Inventory database uses life cycle assessment methodology to evaluate environmental impacts. The datasets mirror Canada's food consumption patterns, averaging the spectrum of agricultural practices weighted by domestic production and import shares. The database is structured according to the nomenclature and categorisation of the Canadian Nutrient File. Environmental sustainability is assessed using a cradle-to-grave approach, including indicators such as greenhouse gas emissions, eutrophication, particulate matter, freshwater usage, land use, non-renewable energy consumption, and food loss and waste. Environmental impacts are quantified through an environmental impact score (EIS) assigned to each impact category for a given food. The EIS-nutrition (EIS-N) integrates the evaluation of nutritional quality with environmental impacts using Nutri-Score, a validated food nutrient-profiling tool. The EIS-N is modelled as a ratio of the EIS to the Nutri-Score values. FINDINGS: Preliminary results show the greatest environmental impacts for animal-based foods, particularly beef, in agreement with current literature. Foods with greater nutritional quality also generally show greater environmental sustainability, with some exceptions for particular impact categories. INTERPRETATION: The database and index have potential to serve as powerful tools to support researchers, policy makers, and consumers, harnessing big data to drive efficient food and climate solutions for systems transformation. FUNDING: Province of Ontario and University of Toronto, CIHR SMART Healthy Cities Training Platform, and University of Toronto's Temerty Faculty of Medicine.


Environment , Food , Animals , Cattle , Humans , Diet , Life Cycle Stages , Ontario
3.
JAMA Pediatr ; 178(3): 237-246, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38227336

Importance: Concerns have been raised that frequent consumption of 100% fruit juice may promote weight gain. Current evidence on fruit juice and weight gain has yielded mixed findings from both observational studies and clinical trials. Objective: To synthesize the available evidence on 100% fruit juice consumption and body weight in children and adults. Data Sources: MEDLINE, Embase, and Cochrane databases were searched through May 18, 2023. Study Selection: Prospective cohort studies of at least 6 months and randomized clinical trials (RCTs) of at least 2 weeks assessing the association of 100% fruit juice with body weight change in children and adults were included. In the trials, fruit juices were compared with noncaloric controls. Data Extraction and Synthesis: Data were pooled using random-effects models and presented as ß coefficients with 95% CIs for cohort studies and mean differences (MDs) with 95% CIs for RCTs. Main Outcomes and Measures: Change in body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) was assessed in children and change in body weight in adults. Results: A total of 42 eligible studies were included in this analysis, including 17 among children (17 cohorts; 0 RCTs; 45 851 children; median [IQR] age, 8 [1-15] years) and 25 among adults (6 cohorts; 19 RCTs; 268 095 adults; median [IQR] age among cohort studies, 48 [41-61] years; median [IQR] age among RCTs, 42 [25-59]). Among cohort studies in children, each additional serving per day of 100% fruit juice was associated with a 0.03 (95% CI, 0.01-0.05) higher BMI change. Among cohort studies in adults, studies that did not adjust for energy showed greater body weight gain (0.21 kg; 95% CI, 0.15-0.27 kg) than studies that did adjust for energy intake (-0.08 kg; 95% CI, -0.11 to -0.05 kg; P for meta-regression <.001). RCTs in adults found no significant association of assignment to 100% fruit juice with body weight but the CI was wide (MD, -0.53 kg; 95% CI, -1.55 to 0.48 kg). Conclusion and Relevance: Based on the available evidence from prospective cohort studies, in this systematic review and meta-analysis, 1 serving per day of 100% fruit juice was associated with BMI gain among children. Findings in adults found a significant association among studies unadjusted for total energy, suggesting potential mediation by calories. Further trials of 100% fruit juice and body weight are desirable. Our findings support guidance to limit consumption of fruit juice to prevent intake of excess calories and weight gain.


Fruit and Vegetable Juices , Weight Gain , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Middle Aged , Body Mass Index , Body Weight , Randomized Controlled Trials as Topic
6.
PLoS One ; 18(8): e0264802, 2023.
Article En | MEDLINE | ID: mdl-37582096

Whether food source or energy mediates the effect of fructose-containing sugars on blood pressure (BP) is unclear. We conducted a systematic review and meta-analysis of the effect of different food sources of fructose-containing sugars at different levels of energy control on BP. We searched MEDLINE, Embase and the Cochrane Library through June 2021 for controlled trials ≥7-days. We prespecified 4 trial designs: substitution (energy matched substitution of sugars); addition (excess energy from sugars added); subtraction (excess energy from sugars subtracted); and ad libitum (energy from sugars freely replaced). Outcomes were systolic and diastolic BP. Independent reviewers extracted data. GRADE assessed the certainty of evidence. We included 93 reports (147 trial comparisons, N = 5,213) assessing 12 different food sources across 4 energy control levels in adults with and without hypertension or at risk for hypertension. Total fructose-containing sugars had no effect in substitution, subtraction, or ad libitum trials but decreased systolic and diastolic BP in addition trials (P<0.05). There was evidence of interaction/influence by food source: fruit and 100% fruit juice decreased and mixed sources (with sugar-sweetened beverages [SSBs]) increased BP in addition trials and the removal of SSBs (linear dose response gradient) and mixed sources (with SSBs) decreased BP in subtraction trials. The certainty of evidence was generally moderate. Food source and energy control appear to mediate the effect of fructose-containing sugars on BP. The evidence provides a good indication that fruit and 100% fruit juice at low doses (up to or less than the public health threshold of ~10% E) lead to small, but important reductions in BP, while the addition of excess energy of mixed sources (with SSBs) at high doses (up to 23%) leads to moderate increases and their removal or the removal of SSBs alone (up to ~20% E) leads to small, but important decreases in BP in adults with and without hypertension or at risk for hypertension. Trial registration: Clinicaltrials.gov: NCT02716870.


Fructose , Hypertension , Adult , Humans , Blood Pressure , Fruit , Sugars
7.
Nutrients ; 15(5)2023 02 28.
Article En | MEDLINE | ID: mdl-36904237

BACKGROUND: Health authorities are near universal in their recommendation to replace sugar-sweetened beverages (SSBs) with water. Non-nutritive sweetened beverages (NSBs) are not as widely recommended as a replacement strategy due to a lack of established benefits and concerns they may induce glucose intolerance through changes in the gut microbiome. The STOP Sugars NOW trial aims to assess the effect of the substitution of NSBs (the "intended substitution") versus water (the "standard of care substitution") for SSBs on glucose tolerance and microbiota diversity. DESIGN AND METHODS: The STOP Sugars NOW trial (NCT03543644) is a pragmatic, "head-to-head", open-label, crossover, randomized controlled trial conducted in an outpatient setting. Participants were overweight or obese adults with a high waist circumference who regularly consumed ≥1 SSBs daily. Each participant completed three 4-week treatment phases (usual SSBs, matched NSBs, or water) in random order, which were separated by ≥4-week washout. Blocked randomization was performed centrally by computer with allocation concealment. Outcome assessment was blinded; however, blinding of participants and trial personnel was not possible. The two primary outcomes are oral glucose tolerance (incremental area under the curve) and gut microbiota beta-diversity (weighted UniFrac distance). Secondary outcomes include related markers of adiposity and glucose and insulin regulation. Adherence was assessed by objective biomarkers of added sugars and non-nutritive sweeteners and self-report intake. A subset of participants was included in an Ectopic Fat sub-study in which the primary outcome is intrahepatocellular lipid (IHCL) by 1H-MRS. Analyses will be according to the intention to treat principle. BASELINE RESULTS: Recruitment began on 1 June 2018, and the last participant completed the trial on 15 October 2020. We screened 1086 participants, of whom 80 were enrolled and randomized in the main trial and 32 of these were enrolled and randomized in the Ectopic Fat sub-study. The participants were predominantly middle-aged (mean age 41.8 ± SD 13.0 y) and had obesity (BMI of 33.7 ± 6.8 kg/m2) with a near equal ratio of female: male (51%:49%). The average baseline SSB intake was 1.9 servings/day. SSBs were replaced with matched NSB brands, sweetened with either a blend of aspartame and acesulfame-potassium (95%) or sucralose (5%). CONCLUSIONS: Baseline characteristics for both the main and Ectopic Fat sub-study meet our inclusion criteria and represent a group with overweight or obesity, with characteristics putting them at risk for type 2 diabetes. Findings will be published in peer-reviewed open-access medical journals and provide high-level evidence to inform clinical practice guidelines and public health policy for the use NSBs in sugars reduction strategies. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT03543644.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Non-Nutritive Sweeteners , Sugar-Sweetened Beverages , Middle Aged , Humans , Adult , Male , Female , Overweight , Water , Sugars , Obesity , Glucose , Beverages
9.
Am J Clin Nutr ; 117(1): 160-174, 2023 01.
Article En | MEDLINE | ID: mdl-36789935

BACKGROUND: Sugar-sweetened beverages (SSBs) have been implicated in fueling the obesity epidemic. OBJECTIVES: This study aimed to update a synthesis of the evidence on SSBs and weight gain in children and adults. METHODS: MEDLINE, Embase, and Cochrane databases were searched through September 8, 2022, for prospective cohort studies and randomized controlled trials (RCTs) that evaluated intake of SSBs in relation to BMI and body weight in children and adults, respectively. Eligible interventions were compared against a noncaloric control. Study-level estimates were pooled using random-effects meta-analysis and presented as ß-coefficients with 95% CIs for cohorts and weighted mean differences (MDs) with 95% CIs for RCTs. RESULTS: We identified 85 articles including 48 in children (40 cohorts, n = 91,713; 8 RCTs, n = 2783) and 37 in adults (21 cohorts, n = 448,661; 16 RCTs, n = 1343). Among cohort studies, each serving/day increase in SSB intake was associated with a 0.07-kg/m2 (95% CI: 0.04 kg/m2, 0.10 kg/m2) higher BMI in children and a 0.42-kg (95% CI: 0.26 kg, 0.58 kg) higher body weight in adults. RCTs in children indicated less BMI gain with SSB reduction interventions compared with control (MD: -0.21 kg/m2; 95% CI: -0.40 kg/m2, -0.01 kg/m2). In adults, randomization to addition of SSBs to the diet led to greater body weight gain (MD: 0.83 kg; 95% CI: 0.47 kg, 1.19 kg), and subtraction of SSBs led to weight loss (MD: -0.49 kg; 95% CI: -0.66 kg, -0.32 kg) compared with the control groups. A positive linear dose-response association between SSB consumption and weight gain was found in all outcomes assessed. CONCLUSIONS: Our updated systematic review and meta-analysis expands on prior evidence to confirm that SSB consumption promotes higher BMI and body weight in both children and adults, underscoring the importance of dietary guidance and public policy strategies to limit intake. This meta-analysis was registered at the International Prospective Register of Systematic Reviews as CRD42020209915.


Sugar-Sweetened Beverages , Humans , Adult , Child , Beverages , Randomized Controlled Trials as Topic , Weight Gain , Body Weight , Cohort Studies
10.
Am J Clin Nutr ; 117(4): 741-765, 2023 04.
Article En | MEDLINE | ID: mdl-36842451

BACKGROUND: Sugar-sweetened beverages (SSBs) providing excess energy increase adiposity. The effect of other food sources of sugars at different energy control levels is unclear. OBJECTIVES: To determine the effect of food sources of fructose-containing sugars by energy control on adiposity. METHODS: In this systematic review and meta-analysis, MEDLINE, Embase, and Cochrane Library were searched through April 2022 for controlled trials ≥2 wk. We prespecified 4 trial designs by energy control: substitution (energy-matched replacement of sugars), addition (energy from sugars added), subtraction (energy from sugars subtracted), and ad libitum (energy from sugars freely replaced). Independent authors extracted data. The primary outcome was body weight. Secondary outcomes included other adiposity measures. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to assess the certainty of evidence. RESULTS: We included 169 trials (255 trial comparisons, n = 10,357) assessing 14 food sources at 4 energy control levels over a median 12 wk. Total fructose-containing sugars increased body weight (MD: 0.28 kg; 95% CI: 0.06, 0.50 kg; PMD = 0.011) in addition trials and decreased body weight (MD: -0.96 kg; 95% CI: -1.78, -0.14 kg; PMD = 0.022) in subtraction trials with no effect in substitution or ad libitum trials. There was interaction/influence by food sources on body weight: substitution trials [fruits decreased; added nutritive sweeteners and mixed sources (with SSBs) increased]; addition trials [dried fruits, honey, fruits (≤10%E), and 100% fruit juice (≤10%E) decreased; SSBs, fruit drink, and mixed sources (with SSBs) increased]; subtraction trials [removal of mixed sources (with SSBs) decreased]; and ad libitum trials [mixed sources (with/without SSBs) increased]. GRADE scores were generally moderate. Results were similar across secondary outcomes. CONCLUSIONS: Energy control and food sources mediate the effect of fructose-containing sugars on adiposity. The evidence provides a good indication that excess energy from sugars (particularly SSBs at high doses ≥20%E or 100 g/d) increase adiposity, whereas their removal decrease adiposity. Most other food sources had no effect, with some showing decreases (particularly fruits at lower doses ≤10%E or 50 g/d). This trial was registered at clinicaltrials.gov as NCT02558920 (https://clinicaltrials.gov/ct2/show/NCT02558920).


Adiposity , Fructose , Humans , Obesity , Body Weight , Fruit , Beverages
11.
J Am Nutr Assoc ; 42(5): 459-468, 2023 07.
Article En | MEDLINE | ID: mdl-35736960

A clear understanding of changes in the consumption of sugars and other sugars-containing foods has become essential for dietary recommendations and nutrition policy considerations. This study aimed to estimate the consumption trends of added sugars, energy, macronutrients, and food categories using food supply data.Annual food availability data were obtained from Statistics Canada "Food Available in Canada" database and compared to the equivalent data from Canadian Community Health Survey 2004/2015 and USDA "Food Availability (Per Capita) Data System".There was a 17% decline in the loss-adjusted per capita consumption of added sugars (%energy) in Canada over the past two decades, largely attributed to reduced intakes of refined sugar and sugars from soft drinks. Added sugars consumption was generally 30% less than that in the US. There was also a consistent decline in total energy intake and %energy from carbohydrates, accompanied by increased %energy derived from fats particularly during the most recent 10 years.The observed trends in added sugars availability are similar to findings from the Canadian Community Health Surveys, demonstrating the potential application of annual loss-adjusted food availability data in monitoring trends in food and macronutrient intakes over time to complement dietary survey data in informing public policy development.


Energy Intake , Sugars , United States , Canada , Nutrition Surveys , Nutrients , Carbohydrates
12.
Diabetes Care ; 45(12): 2862-2870, 2022 12 01.
Article En | MEDLINE | ID: mdl-36326712

OBJECTIVE: High cereal fiber and low-glycemic index (GI) diets are associated with reduced cardiovascular disease (CVD) risk in cohort studies. Clinical trial evidence on event incidence is lacking. Therefore, to make trial outcomes more directly relevant to CVD, we compared the effect on carotid plaque development in diabetes of a low-GI diet versus a whole-grain wheat-fiber diet. RESEARCH DESIGN AND METHODS: The study randomized 169 men and women with well-controlled type 2 diabetes to counseling on a low GI-diet or whole-grain wheat-fiber diet for 3 years. Change in carotid vessel wall volume (VWV) (prespecified primary end point) was assessed by MRI as an indication of arterial damage. RESULTS: Of 169 randomized participants, 134 completed the study. No treatment differences were seen in VWV. However, on the whole-grain wheat-fiber diet, VWV increased significantly from baseline, 23 mm3 (95% CI 4, 41; P = 0.016), but not on the low-GI diet, 8 mm3 (95% CI -10, 26; P = 0.381). The low-GI diet resulted in preservation of renal function, as estimated glomerular filtration rate, compared with the reduction following the wheat-fiber diet. HbA1c was modestly reduced over the first 9 months in the intention-to-treat analysis and extended with greater compliance to 15 months in the per-protocol analysis. CONCLUSIONS: Since the low-GI diet was similar to the whole-grain wheat-fiber diet recommended for cardiovascular risk reduction, the low-GI diet may also be effective for CVD risk reduction.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Male , Female , Humans , Glycemic Index , Diabetes Mellitus, Type 2/complications , Triticum/adverse effects , Dietary Fiber/therapeutic use , Diet , Cardiovascular Diseases/epidemiology , Blood Glucose
13.
Nutrients ; 14(19)2022 Sep 26.
Article En | MEDLINE | ID: mdl-36235639

BACKGROUND: Fructose-containing sugars as sugar-sweetened beverages (SSBs) may increase inflammatory biomarkers. Whether this effect is mediated by the food matrix at different levels of energy is unknown. To investigate the role of food source and energy, we conducted a systematic review and meta-analysis of controlled trials on the effect of different food sources of fructose-containing sugars on inflammatory markers at different levels of energy control. METHODS: MEDLINE, Embase, and the Cochrane Library were searched through March 2022 for controlled feeding trials ≥ 7 days. Four trial designs were prespecified by energy control: substitution (energy matched replacement of sugars); addition (excess energy from sugars added to diets); subtraction (energy from sugars subtracted from diets); and ad libitum (energy from sugars freely replaced). The primary outcome was C-reactive protein (CRP). Secondary outcomes were tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Independent reviewers extracted data and assessed risk of bias. GRADE assessed certainty of evidence. RESULTS: We identified 64 controlled trials (91 trial comparisons, n = 4094) assessing 12 food sources (SSB; sweetened dairy; sweetened dairy alternative [soy]; 100% fruit juice; fruit; dried fruit; mixed fruit forms; sweetened cereal grains and bars; sweets and desserts; added nutritive [caloric] sweetener; mixed sources [with SSBs]; and mixed sources [without SSBs]) at 4 levels of energy control over a median 6-weeks in predominantly healthy mixed weight or overweight/obese adults. Total fructose-containing sugars decreased CRP in addition trials and had no effect in substitution, subtraction or ad libitum trials. No effect was observed on other outcomes at any level of energy control. There was evidence of interaction/influence by food source: substitution trials (sweetened dairy alternative (soy) and 100% fruit juice decreased, and mixed sources (with SSBs) increased CRP); and addition trials (fruit decreased CRP and TNF-α; sweets and desserts (dark chocolate) decreased IL-6). The certainty of evidence was moderate-to-low for the majority of analyses. CONCLUSIONS: Food source appears to mediate the effect of fructose-containing sugars on inflammatory markers over the short-to-medium term. The evidence provides good indication that mixed sources that contain SSBs increase CRP, while most other food sources have no effect with some sources (fruit, 100% fruit juice, sweetened soy beverage or dark chocolate) showing decreases, which may be dependent on energy control. CLINICALTRIALS: gov: (NCT02716870).


Fructose , Interleukin-6 , Beverages , Biomarkers , C-Reactive Protein/metabolism , Sweetening Agents , Tumor Necrosis Factor-alpha
14.
Diabetologia ; 65(12): 2011-2031, 2022 12.
Article En | MEDLINE | ID: mdl-36008559

AIMS/HYPOTHESIS: Nordic dietary patterns that are high in healthy traditional Nordic foods may have a role in the prevention and management of diabetes. To inform the update of the EASD clinical practice guidelines for nutrition therapy, we conducted a systematic review and meta-analysis of Nordic dietary patterns and cardiometabolic outcomes. METHODS: We searched MEDLINE, EMBASE and The Cochrane Library from inception to 9 March 2021. We included prospective cohort studies and RCTs with a follow-up of ≥1 year and ≥3 weeks, respectively. Two independent reviewers extracted relevant data and assessed the risk of bias (Newcastle-Ottawa Scale and Cochrane risk of bias tool). The primary outcome was total CVD incidence in the prospective cohort studies and LDL-cholesterol in the RCTs. Secondary outcomes in the prospective cohort studies were CVD mortality, CHD incidence and mortality, stroke incidence and mortality, and type 2 diabetes incidence; in the RCTs, secondary outcomes were other established lipid targets (non-HDL-cholesterol, apolipoprotein B, HDL-cholesterol, triglycerides), markers of glycaemic control (HbA1c, fasting glucose, fasting insulin), adiposity (body weight, BMI, waist circumference) and inflammation (C-reactive protein), and blood pressure (systolic and diastolic blood pressure). The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of the evidence. RESULTS: We included 15 unique prospective cohort studies (n=1,057,176, with 41,708 cardiovascular events and 13,121 diabetes cases) of people with diabetes for the assessment of cardiovascular outcomes or people without diabetes for the assessment of diabetes incidence, and six RCTs (n=717) in people with one or more risk factor for diabetes. In the prospective cohort studies, higher adherence to Nordic dietary patterns was associated with 'small important' reductions in the primary outcome, total CVD incidence (RR for highest vs lowest adherence: 0.93 [95% CI 0.88, 0.99], p=0.01; substantial heterogeneity: I2=88%, pQ<0.001), and similar or greater reductions in the secondary outcomes of CVD mortality and incidence of CHD, stroke and type 2 diabetes (p<0.05). Inverse dose-response gradients were seen for total CVD incidence, CVD mortality and incidence of CHD, stroke and type 2 diabetes (p<0.05). No studies assessed CHD or stroke mortality. In the RCTs, there were small important reductions in LDL-cholesterol (mean difference [MD] -0.26 mmol/l [95% CI -0.52, -0.00], pMD=0.05; substantial heterogeneity: I2=89%, pQ<0.01), and 'small important' or greater reductions in the secondary outcomes of non-HDL-cholesterol, apolipoprotein B, insulin, body weight, BMI and systolic blood pressure (p<0.05). For the other outcomes there were 'trivial' reductions or no effect. The certainty of the evidence was low for total CVD incidence and LDL-cholesterol; moderate to high for CVD mortality, established lipid targets, adiposity markers, glycaemic control, blood pressure and inflammation; and low for all other outcomes, with evidence being downgraded mainly because of imprecision and inconsistency. CONCLUSIONS/INTERPRETATION: Adherence to Nordic dietary patterns is associated with generally small important reductions in the risk of major CVD outcomes and diabetes, which are supported by similar reductions in LDL-cholesterol and other intermediate cardiometabolic risk factors. The available evidence provides a generally good indication of the likely benefits of Nordic dietary patterns in people with or at risk for diabetes. REGISTRATION: ClinicalTrials.gov NCT04094194. FUNDING: Diabetes and Nutrition Study Group of the EASD Clinical Practice.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulins , Stroke , Humans , Diabetes Mellitus, Type 2/epidemiology , Prospective Studies , Cholesterol, HDL , Cholesterol, LDL , Cholesterol , Obesity , Body Weight , Inflammation , Apolipoproteins , Randomized Controlled Trials as Topic
15.
Nutrients ; 14(14)2022 Jul 12.
Article En | MEDLINE | ID: mdl-35889803

Background: Fructose providing excess calories in the form of sugar sweetened beverages (SSBs) increases markers of non-alcoholic fatty liver disease (NAFLD). Whether this effect holds for other important food sources of fructose-containing sugars is unclear. To investigate the role of food source and energy, we conducted a systematic review and meta-analysis of controlled trials of the effect of fructose-containing sugars by food source at different levels of energy control on non-alcoholic fatty liver disease (NAFLD) markers. Methods and Findings: MEDLINE, Embase, and the Cochrane Library were searched through 7 January 2022 for controlled trials ≥7-days. Four trial designs were prespecified: substitution (energy-matched substitution of sugars for other macronutrients); addition (excess energy from sugars added to diets); subtraction (excess energy from sugars subtracted from diets); and ad libitum (energy from sugars freely replaced by other macronutrients). The primary outcome was intrahepatocellular lipid (IHCL). Secondary outcomes were alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Independent reviewers extracted data and assessed risk of bias. The certainty of evidence was assessed using GRADE. We included 51 trials (75 trial comparisons, n = 2059) of 10 food sources (sugar-sweetened beverages (SSBs); sweetened dairy alternative; 100% fruit juice; fruit; dried fruit; mixed fruit sources; sweets and desserts; added nutritive sweetener; honey; and mixed sources (with SSBs)) in predominantly healthy mixed weight or overweight/obese younger adults. Total fructose-containing sugars increased IHCL (standardized mean difference = 1.72 [95% CI, 1.08 to 2.36], p < 0.001) in addition trials and decreased AST in subtraction trials with no effect on any outcome in substitution or ad libitum trials. There was evidence of influence by food source with SSBs increasing IHCL and ALT in addition trials and mixed sources (with SSBs) decreasing AST in subtraction trials. The certainty of evidence was high for the effect on IHCL and moderate for the effect on ALT for SSBs in addition trials, low for the effect on AST for the removal of energy from mixed sources (with SSBs) in subtraction trials, and generally low to moderate for all other comparisons. Conclusions: Energy control and food source appear to mediate the effect of fructose-containing sugars on NAFLD markers. The evidence provides a good indication that the addition of excess energy from SSBs leads to large increases in liver fat and small important increases in ALT while there is less of an indication that the removal of energy from mixed sources (with SSBs) leads to moderate reductions in AST. Varying uncertainty remains for the lack of effect of other important food sources of fructose-containing sugars at different levels of energy control.


Non-alcoholic Fatty Liver Disease , Sugar-Sweetened Beverages , Adult , Beverages/analysis , Fructose/adverse effects , Fruit , Fruit and Vegetable Juices/analysis , Humans , Non-alcoholic Fatty Liver Disease/etiology , Randomized Controlled Trials as Topic
16.
JMIR Hum Factors ; 9(2): e34704, 2022 Apr 21.
Article En | MEDLINE | ID: mdl-35451981

BACKGROUND: The Portfolio Diet, or Dietary Portfolio, is a therapeutic dietary pattern that combines cholesterol-lowering foods to manage dyslipidemia for the prevention of cardiovascular disease. To translate the Portfolio Diet for primary care, we developed the PortfolioDiet.app as a patient and physician educational and engagement tool for PCs and smartphones. The PortfolioDiet.app is currently being used as an add-on therapy to the standard of care (usual care) for the prevention of cardiovascular disease in primary care. To enhance the adoption of this tool, it is important to ensure that the PortfolioDiet.app meets the needs of its target end users. OBJECTIVE: The main objective of this project is to undertake user testing to inform modifications to the PortfolioDiet.app as part of ongoing engagement in quality improvement (QI). METHODS: We undertook a 2-phase QI project from February 2021 to September 2021. We recruited users by convenience sampling. Users included patients, family physicians, and dietitians, as well as nutrition and medical students. For both phases, users were asked to use the PortfolioDiet.app daily for 7 days. In phase 1, a mixed-form questionnaire was administered to evaluate the users' perceived acceptability, knowledge acquisition, and engagement with the PortfolioDiet.app. The questionnaire collected both quantitative and qualitative data, including 2 open-ended questions. The responses were used to inform modifications to the PortfolioDiet.app. In phase 2, the System Usability Scale was used to assess the usability of the updated PortfolioDiet.app, with a score higher than 70 being considered acceptable. RESULTS: A total of 30 and 19 users were recruited for phase 1 and phase 2, respectively. In phase 1, the PortfolioDiet.app increased users' perceived knowledge of the Portfolio Diet and influenced their perceived food choices. Limitations identified by users included challenges navigating to resources and profile settings, limited information on plant sterols, inaccuracies in points, timed-logout frustration, request for step-by-step pop-up windows, and request for a mobile app version; when looking at positive feedback, the recipe section was the most commonly praised feature. Between the project phases, 6 modifications were made to the PortfolioDiet.app to incorporate and address user feedback. At phase 2, the average System Usability Scale score was 85.39 (SD 11.47), with 100 being the best possible. CONCLUSIONS: By undertaking user testing of the PortfolioDiet.app, its limitations and strengths were able to be identified, informing modifications to the application, which resulted in a clinical tool that better meets users' needs. The PortfolioDiet.app educates users on the Portfolio Diet and is considered acceptable by users. Although further refinements to the PortfolioDiet.app will continue to be made before its evaluation in a clinical trial, the result of this QI project is an improved clinical tool.

17.
JAMA Netw Open ; 5(3): e222092, 2022 03 01.
Article En | MEDLINE | ID: mdl-35285920

Importance: There are concerns that low- and no-calorie sweetened beverages (LNCSBs) do not have established benefits, with major dietary guidelines recommending the use of water and not LNCSBs to replace sugar-sweetened beverages (SSBs). Whether LNCSB as a substitute can yield similar improvements in cardiometabolic risk factors vs water in their intended substitution for SSBs is unclear. Objective: To assess the association of LNCSBs (using 3 prespecified substitutions of LNCSBs for SSBs, water for SSBs, and LNCSBs for water) with body weight and cardiometabolic risk factors in adults with and without diabetes. Data Sources: Medline, Embase, and the Cochrane Central Register of Controlled Trials were searched from inception through December 26, 2021. Study Selection: Randomized clinical trials (RCTs) with at least 2 weeks of interventions comparing LNCSBs, SSBs, and/or water were included. Data Extraction and Synthesis: Data were extracted and risk of bias was assessed by 2 independent reviewers. A network meta-analysis was performed with data expressed as mean difference (MD) or standardized mean difference (SMD) with 95% CIs. The GRADE (Grading of Recommendations Assessment, Development and Evaluation) system was used to assess the certainty of the evidence. Main Outcomes and Measures: The primary outcome was body weight. Secondary outcomes were other measures of adiposity, glycemic control, blood lipids, blood pressure, measures of nonalcoholic fatty liver disease, and uric acid. Results: A total of 17 RCTs with 24 trial comparisons were included, involving 1733 adults (mean [SD] age, 33.1 [6.6] years; 1341 women [77.4%]) with overweight or obesity who were at risk for or had diabetes. Overall, LNCSBs were a substitute for SSBs in 12 RCTs (n = 601 participants), water was a substitute for SSBs in 3 RCTs (n = 429), and LNCSBs were a substitute for water in 9 RCTs (n = 974). Substitution of LNCSBs for SSBs was associated with reduced body weight (MD, -1.06 kg; 95% CI, -1.71 to -0.41 kg), body mass index (MD, -0.32; 95% CI, -0.58 to -0.07), percentage of body fat (MD, -0.60%; 95% CI, -1.03% to -0.18%), and intrahepatocellular lipid (SMD, -0.42; 95% CI, -0.70 to -0.14). Substituting water for SSBs was not associated with any outcome. There was also no association found between substituting LNCSBs for water with any outcome except glycated hemoglobin A1c (MD, 0.21%; 95% CI, 0.02% to 0.40%) and systolic blood pressure (MD, -2.63 mm Hg; 95% CI, -4.71 to -0.55 mm Hg). The certainty of the evidence was moderate (substitution of LNCSBs for SSBs) and low (substitutions of water for SSBs and LNCSBs for water) for body weight and was generally moderate for all other outcomes across all substitutions. Conclusions and Relevance: This systematic review and meta-analysis found that using LNCSBs as an intended substitute for SSBs was associated with small improvements in body weight and cardiometabolic risk factors without evidence of harm and had a similar direction of benefit as water substitution. The evidence supports the use of LNCSBs as an alternative replacement strategy for SSBs over the moderate term in adults with overweight or obesity who are at risk for or have diabetes.


Cardiovascular Diseases , Diabetes Mellitus , Sugar-Sweetened Beverages , Adult , Body Weight , Cardiovascular Diseases/prevention & control , Female , Humans , Male , Obesity , Overweight , Water
18.
Appl Physiol Nutr Metab ; 47(4): 415-428, 2022 Apr.
Article En | MEDLINE | ID: mdl-35007181

Dietary recommendations to reduce sugars consumption may influence choices of sugars-containing foods and affect the intake of key micronutrients. We compared intakes of nutrients and food sources stratified by quintiles of total sugars in Canadian children (2-8 y) and adolescents (9-13 y, 14-18 y) using 24-hour dietary recalls from the 2015 Canadian Community Health Survey-Nutrition. Energy intakes did not differ across quintiles of sugars intake. Those with lower sugars intakes (Q1/Q3) generally had higher protein, fat, sodium, niacin, folate, and zinc and lower vitamin C compared with those with the highest sugars intakes (Q5). Q1 also had lower potassium but higher saturated fat compared with Q5. Further, Q1 generally had higher protein, fats, and niacin compared with Q3, while children in Q3 had higher potassium and riboflavin and older adolescents had higher calcium and fibre. Q5 had highest intakes of multiple sugar-containing food categories (e.g., fruit, confectionary, milks, cakes/pies/pastries), with higher sugars-sweetened beverages in adolescents. Q3 had higher fruit, milks, and fruit juice compared with Q1 and lower sugars/syrups/preserves, confectionary, and fruit juices compared with Q5. Certain nutrient-dense food sources of sugars (fruit, milks) may help increase key nutrients (potassium, calcium, fibre) in older adolescents with low sugars intakes. However, in those with the highest sugars intakes, nutrient-poor foods may displace nutrient-dense foods. Novelty: Canadian children and adolescents with lower sugars intake have better intakes of some nutrients. Energy intakes did not differ across sugars intake. Older adolescents with mean intakes of total sugars had better intakes of some key nutrients (potassium, calcium, fibre).


Nutrients , Public Health , Adolescent , Canada , Child , Cross-Sectional Studies , Diet , Energy Intake , Humans , Nutrients/analysis , Nutrition Surveys , Sugars
19.
J Nutr ; 152(4): 994-1005, 2022 04.
Article En | MEDLINE | ID: mdl-36967189

BACKGROUND: Structure and protein-starch interactions in pasta products can be responsible for lower postprandial glycemic responses compared with other cereal foods. OBJECTIVES: We tested the effect on postprandial glucose metabolism induced by 2 pasta products, couscous, and bread, through their structural changes during mastication and simulated gastric digestion. METHODS: Two randomized controlled trials (n = 30/trial) in healthy, normal-weight adults (mean BMI of 23.9 kg/m2 (study 1) and 23.0 kg/m2 (study 2)) evaluated postprandial glucose metabolism modulation to portions of durum wheat semolina spaghetti, penne, couscous, and bread each containing 50 g available carbohydrate. A mastication trial involving 26 normal-weight adults was conducted to investigate mastication processes and changes in particle size distribution and microstructure (light microscopy) of boluses after mastication and in vitro gastric digestion. RESULTS: Both pasta products resulted in lower areas under the 2-h curve for blood glucose (-40% for spaghetti and -22% for penne compared with couscous; -41% for spaghetti and -30% for penne compared with bread), compared with the other grain products (P < 0.05). Pasta products required more chews (spaghetti: 34 ± 18; penne: 38 ± 20; bread: 27 ± 13; couscous: 24 ± 17) and longer oral processing (spaghetti: 21 ± 13 s; penne: 23 ± 14 s; bread: 18 ± 9 s; couscous: 14 ± 10 s) compared with bread or couscous (P < 0.01). Pastas contained more large particles (46-67% of total particle area) compared with bread (0-30%) and couscous (1%) after mastication and in vitro gastric digestion. After in vitro gastric digestion, pasta samples still contained large areas of nonhydrolyzed starch embedded within the protein network; the protein in bread and couscous was almost entirely digested, and the starch was hydrolyzed. CONCLUSIONS: Preservation of the pasta structure during mastication and gastric digestion explains slower starch hydrolysis and, consequently, lower postprandial glycemia compared with bread or couscous prepared from the same durum wheat semolina flour in healthy adults. The postprandial in vivo trials were registered at clinicaltrials.gov as NCT03098017 and NCT03104686.


Glucose , Insulin , Mastication , Postprandial Period , Adult , Humans , Blood Glucose/metabolism , Bread , Glucose/metabolism , Insulin/metabolism , Starch/metabolism , Triticum/chemistry , Meals
20.
J Nutr ; 152(4): 994-1005, 2022 04 01.
Article En | MEDLINE | ID: mdl-34669959

BACKGROUND: Structure and protein-starch interactions in pasta products can be responsible for lower postprandial glycemic responses compared with other cereal foods. OBJECTIVES: We tested the effect on postprandial glucose metabolism induced by 2 pasta products, couscous, and bread, through their structural changes during mastication and simulated gastric digestion. METHODS: Two randomized controlled trials (n = 30/trial) in healthy, normal-weight adults (mean BMI of 23.9 kg/m2 (study 1) and 23.0 kg/m2 (study 2)) evaluated postprandial glucose metabolism modulation to portions of durum wheat semolina spaghetti, penne, couscous, and bread each containing 50 g available carbohydrate. A mastication trial involving 26 normal-weight adults was conducted to investigate mastication processes and changes in particle size distribution and microstructure (light microscopy) of boluses after mastication and in vitro gastric digestion. RESULTS: Both pasta products resulted in lower areas under the 2-h curve for blood glucose (-40% for spaghetti and -22% for penne compared with couscous; -41% for spaghetti and -30% for penne compared with bread), compared with the other grain products (P < 0.05). Pasta products required more chews (spaghetti: 34 ± 18; penne: 38 ± 20; bread: 27 ± 13; couscous: 24 ± 17) and longer oral processing (spaghetti: 21 ± 13 s; penne: 23 ± 14 s; bread: 18 ± 9 s; couscous: 14 ± 10 s) compared with bread or couscous (P < 0.01). Pastas contained more large particles (46-67% of total particle area) compared with bread (0-30%) and couscous (1%) after mastication and in vitro gastric digestion. After in vitro gastric digestion, pasta samples still contained large areas of nonhydrolyzed starch embedded within the protein network; the protein in bread and couscous was almost entirely digested, and the starch was hydrolyzed. CONCLUSIONS: Preservation of the pasta structure during mastication and gastric digestion explains slower starch hydrolysis and, consequently, lower postprandial glycemia compared with bread or couscous prepared from the same durum wheat semolina flour in healthy adults.The postprandial in vivo trials were registered at clinicaltrials.gov as NCT03098017 and NCT03104686.


Glucose , Insulins , Adult , Blood Glucose/metabolism , Bread , Glucose/metabolism , Humans , Insulin , Mastication , Starch/metabolism , Triticum/chemistry
...