Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent Sci ; 19(1): 479-491, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303841

ABSTRACT

Background/purpose: The modification in 3D hydrogels, tissue engineering, and biomaterials science has enabled us to fabricate novel substitutes for bone regeneration. This study aimed to combine different biomaterials by 3D technique to fabricate a promising all-rounded hydrogel for bone regeneration. Materials and methods: In this study, glycidyl methacrylate (GMA)-modified poly γ-glutamic acid (γ-PGA-GMA) hydrogels with calcium silicate (CS) hydrogel of different concentrations were fabricated by a 3D printing technique, and their biocompatibility and capability in bone regeneration were also evaluated. Results: The results showed that CS γ-PGA-GMA could be successfully fabricated, and the presence of CS enhanced the rheological and mechanical properties of γ-PGA-GMA hydrogels, thus making them more adept at 3D printing and implantations. SEM images of the surface structure showed that higher CS concentrations (5% and 10%) contributed to denser surface architectures, thus achieving improved cellular adhesion and stem cell proliferation. Furthermore, higher concentrations of CS resulted in elevated expressions of osteogenic-related markers such as alkaline phosphatase (ALP) and osteocalcin (OC), as well as enhanced calcium deposition represented by the increased Alizarin Red S staining. In vivo studies referring to critical defects of rabbit femur further showed that the existence of hydrogels alone was able to induce partial bone regeneration, demonstrated by the results from quantitative and qualitative analysis of micro-CT scans. However, CS alterations caused significant increases in bone regeneration, as indicated by micro-CT and histological staining. Conclusion: These results robustly suggest combining different biomaterials is crucial to producing a well-rounded hydrogel for tissue regeneration. We hope this study could be applied as a platform for others to brainstorm potential out-of-the-box solutions, contributing to developing high-potential biomaterials for bone regeneration.

2.
Front Cell Dev Biol ; 11: 1330049, 2023.
Article in English | MEDLINE | ID: mdl-38357529

ABSTRACT

Background: The programming of innate and adaptive immunity plays a pivotal role in determining the course of pregnancy, leading to either normal term birth (TB) or preterm birth (PB) through the modulation of macrophage (M1/M2) differentiation. Extracellular vesicles (EVs) in maternal blood, harboring a repertoire of physiological and pathological messengers, are integral players in pregnancy outcomes. It is unknown whether urinary EVs (UEVs) could serve as a non-invasive mechanistic biomarker for predicting PB. Methods: This study investigated first-trimester UEVs carrying M1 messengers with altered immune programming, aiming to discern their correlation to subsequent PB. A birth cohort comprising 501 pregnant women, with 40 women experiencing PB matched to 40 women experiencing TB on the same day, was examined. First-trimester UEVs were isolated for the quantification of immune mediators. Additionally, we evaluated the UEV modulation of "trained immunity" on macrophage and lymphocyte differentiations, including mRNA expression profiles, and chromatin activation modification at histone 3 lysine 4 trimethylation (H3K4me3). Results: We found a significant elevation (p < 0.05) in the particles of UEVs bearing characteristic exosome markers (CD9/CD63/CD81/syntenin) during the first trimester of pregnancy compared to non-pregnant samples. Furthermore, UEVs from PB demonstrated significantly heightened levels of MCP-1 (p = 0.003), IL-6 (p = 0.041), IL-17A (p = 0.007), IP-10 (p = 0.036), TNFα (p = 0.004), IL-12 (p = 0.045), and IFNγ (p = 0.030) relative to those from TB, indicative of altered M1 and Th17 differentiation. Notably, MCP-1 (>174 pg/mL) exhibited a sensitivity of 71.9% and specificity of 64.6%, and MCP-1 (>174 pg/mL) and IFNγ (>8.7 pg/mL) provided a higher sensitivity (84.6%) of predicting PB and moderate specificity of 66.7%. Subsequent investigations showed that UEVs from TB exerted a significant suppression of M1 differentiation (iNOS expression) and Th17 differentiation (RORrT expression) compared to those of PB. Conversely, UEVs derived from PB induced a significantly higher expression of chromatin modification at H3K4me3 with higher production of IL-8 and TNFα cytokines (p < 0.001). Implications: This pioneering study provides critical evidence for the early detection of altered M1 and Th17 responses within UEVs as a predictor of PB and early modulation of altered M1 and Th17 polarization associated with better T-cell regulatory differentiation as a potential prevention of subsequent PB.

SELECTION OF CITATIONS
SEARCH DETAIL