Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Animals (Basel) ; 14(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998017

ABSTRACT

Eighty-four autumn (ACS, n = 45)- and spring (SCS, n = 39)-calved multiparous early lactation Holstein cows were assigned to groups of either: (a) grazing + mixed ration (MR) during partial confinement in outdoor soil-bedded pens with shade (OD-GRZ); (b) grazing + MR during partial confinement in a compost-bedded pack barn with cooling (CB-GRZ); or (c) total confinement fed a totally mixed ration (CB-TMR) in a compost-bedded pack barn. Data were analyzed using the SAS MIXED procedure with significance at p ≤ 0.05. In both seasons, despite behavioral differences (p < 0.05) between the OD-GRZ and CB-GRZ groups (i.e., standing, first grazing meal length, bite rate), the milk and component yields, DM intake, microbial CP output (MCP) and NE efficiency were unaffected by the housing conditions, possibly due to mild weather conditions. The milk yield was substantially higher in the CB-TMR group versus the OD-TMR and CB-TMR groups (p < 0.01) in both ACS (~35%) and SCS (~20%) despite there being no intake differences, without any impact on milk component levels. In ACS, this was associated with a higher MCP, likely due to the higher nutritional value of TMR compared to pasture, which was not the case in SCS. In conclusion, the OD-GRZ group achieved the same milk production as the CB-GRZ group through behavior adaptation, under mild weather conditions, in both calving seasons. The CB-TMR group outperformed the grazing systems in both calving seasons, regardless of the MCP.

2.
Animals (Basel) ; 13(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37174581

ABSTRACT

This study aimed to compare the association between two types of housing, compost barns (CB) vs. outdoor soil-bedded yard (OD), and udder hygiene and mastitis indicators in Holstein dairy cows calving in autumn (n = 31) and spring (n = 27). After calving, cows were transferred to a pasture-based system with half-time confinement in one of two treatments: CB or OD. The udder hygiene score (UHS) was evaluated monthly and on days after rainfall over the entire lactation period. Individual somatic cell count (SCC) was determined throughout lactation, and the prevalence of intramammary infection (IMI) was estimated. Cows confined in OD presented higher UHS compared to cows in CB (p < 0.05) in both calving seasons. After rains, autumn-calving cows in OD were dirtier than on days without previous rain (OR = 1.85, CI 95%: 1.1-3.1; p < 0.02). However, no differences in IMI and clinical mastitis were found between OD and CB cows in either calving season.

3.
Animals (Basel) ; 13(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37106989

ABSTRACT

The diet of dairy cows influences the fatty acid (FA) profiles of their milk and cheese, but how these are affected by different conditions during confinement in a mixed system (MS:grazing + total mixed ration:TMR) is not known. The aim of this study was to compare the FAs of the milk and cheese from MS in a compost-bedded pack barns (CB-GRZ) versus an outdoor soil-bedded pen (OD-GRZ) during confinement, and with a confinement system (100%TMR) in a compost-bedded pack barns (CB-TMR). Individual milk samples (n = 12 cows/group), cheese, and pooled milk (MilkP) samples were collected. The saturated FA percentages in the milk and the omega 6/omega 3 ratio in the MilkP and cheese were greater for the CB-TMR (p < 0.0001), while the unsaturated and monounsaturated FA percentages in the milk were lower for the CB-TMR than the MS (p < 0.001). The milk n-3, C18:3, and conjugated linoleic acid percentages were lower for the CB-TMR than the MS (p < 0.001). The milk n-3 and C18:3 were higher for the CB-GRZ than the OD-GRZ (p < 0.01), but no differences were observed between the MS in the MilkP and cheese. In conclusion, CB-GRZ cows during confinement produced better quality milk compared to OD-GRZ cows. However, the FA profiles of the milk, MilkP, and cheese were affected to a greater extent by the feeding management than by the conditions during confinement.

4.
Animals (Basel) ; 13(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37048470

ABSTRACT

Environmental exposure during confinement and feeding strategy affects cow behavior, nutrient utilization, and performance. Milk production and composition, body condition score, non-esterified fatty acids, and beta-hydroxybutyrate were determined during a full lactation in cows submitted to (a) grazing + partial confinement in outdoor soil-bedded pens with shade structures (OD-GRZ); (b) grazing + partial confinement in a compost-bedded pack barn with cooling capacity (CB-GRZ); or (c) total confinement (same facilities as CB-GRZ) and fed TMR ad libitum (CB-TMR). Autumn (ACS) and spring (SCS) calving season cows were used for each treatment, except for CB-TMR (only SCS). In ACS, treatments did not differ in any variable, possibly due to mild weather. In SCS, milk production was higher in CB-TMR than CB-GRZ, which in turn produced more milk than OD-GRZ. Differences coincided with heat waves and/or heavy rains (similar grazing conditions and mixed ration DM intake). Milk fat, protein and lactose yield, protein content, and BCS were higher in CB-TMR, without differences between CB-GRZ and OD-GRZ. Cows in OD-GRZ had impaired energy metabolism. Under moderately unfavorable environmental conditions (ACS), when well-managed, OD-GRZ systems could equate to the productive response of CB-GRZ. However, in worse climatic conditions (SCS), performance could be compromised, especially when compared to TMR systems.

5.
J Dairy Sci ; 106(2): 1233-1245, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460504

ABSTRACT

This randomized controlled trial on 4 commercial grazing dairy farms investigated whether pegbovigrastim (PEG) treatment affected partial net return as calculated from milk revenues and costs for feed, medical treatments [clinical mastitis, uterine disease, and other diseases (i.e., any medical treatment that was not intended for clinical mastitis or uterine disease)], inseminations, and culling during a full lactation in grazing dairy cows. We also explored the effect of potential interactions of PEG treatment with parity, prepartum body condition score, and prepartum nonesterified fatty acids concentration on partial net return, milk revenues, and the costs mentioned above. Holstein cows were randomly assigned to 1 of the 2 following trial arms: a first PEG dose 9.4 ± 0.3 (mean ± standard error) days before the calving date and a second dose within 24 hours after calving (PEG: primiparous = 342; multiparous = 697) compared with untreated controls (control: primiparous = 391; multiparous = 723). The effect of PEG treatment on the outcomes of interest expressed per year was tested using general linear mixed models. Results are presented as least squares means ± standard error. Overall, PEG treatment increased the partial net return, resulting in an economic benefit per cow per year of $210 ± 100. The cost of treatment of clinical mastitis was lower for PEG treated cows compared with control cows ($9 ± 3). The largest nonsignificant difference was seen for the cost of culling; additionally, PEG treatment numerically reduced the cost of culling by $145 ± 77.


Subject(s)
Cattle Diseases , Mastitis , Uterine Diseases , Pregnancy , Female , Cattle , Animals , Lactation , Parity , Milk , Mastitis/veterinary , Uterine Diseases/veterinary , Cattle Diseases/drug therapy
6.
Int J Food Sci ; 2022: 5610079, 2022.
Article in English | MEDLINE | ID: mdl-35242874

ABSTRACT

This study is aimed at comparing the milk fatty acid profile (FAP) of cows that changed from a mixed system (MS) of double grazing plus total mixed ration (TMR) to a total confinement system (TCS, 100% TMR) with cows that changed to another MS with one overnight grazing plus TMR and compare with cows that were kept unchanged in TCS. The diet change was made in the second month of lactation. The milk samples were collected at one (M1-spring) and three months of lactation (M3-summer). Three treatments are as follows (each n = 10): confined cows fed with TMR throughout the period (GTMR), cows that changed from MS with double grazing plus TMR in M1 to TCS in M3 (GCHD), and cows that changed from a MS with double grazing plus TMR in M1 to a MS with overnight grazing plus TMR in M3 (GTMR+P). Unlike GTMR+P, GCHD improved milk production after change (increased 14% from M1 to M3), but milk FAP was impaired. In M3, conjugated linoleic acid (C18 : 2-CLA) in GTMR and GCHD was lower than GTMR+P (p < 0.05), and linolenic (C18 : 3-n-3) was lower in GCHD than GTMR+P. Maintaining grazing in summer overnight sustained milk fat quality, evidenced by higher C18 : 3 (n-3); C18 : 2 (CLA); and n-6/n-3 ratio than cows that changed to TCS.

7.
Anim Sci J ; 90(11): 1484-1494, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31498545

ABSTRACT

This study aimed to determine if a diet change from a mixed system to a confinement system affects the milk production and composition, behavior and blood biochemistry of dairy cows. Cows were assigned randomly to one of the two treatments: cows fed with TMR (total-mixed-ration) (confined) throughout the period group fed TMR (GTMR, n = 15) and cows that changed their diet from pasture plus TMR to exclusive TMR at 70 ± 14 DIM (GCHD, n = 15). GTMR cows produced more milk and greater lactose and protein yield before the change of diet than GCHD cows (p ≤ .01), but these differences disappeared after the change. GCHD cows decreased the frequency of rumination and lying from before to after the change (p ≤ .03), but in GTMR cows no changes were observed. After diet change, GCHD cows had lower frequency of rumination and lying than GTMR cows (p ≤ .02). Before the change, GCHD cows had greater NEFA (non esterified fatty acids) concentrations than GTMR cows (p = .002). Abrupt change from a mixed system to a confined system was favorable on blood biochemical and milk variables of dairy cows. However, in relation to behavior, the cows expressed difficulties to adapt quickly to the abrupt change of system.


Subject(s)
Animal Feed , Behavior, Animal , Cattle/physiology , Cattle/psychology , Diet/veterinary , Herbivory , Housing, Animal , Lactation/physiology , Adaptation, Psychological , Animal Nutritional Physiological Phenomena , Animals , Body Composition , Cattle/blood , Fatty Acids, Nonesterified/blood , Female , Milk/chemistry , Rumination, Digestive/physiology
8.
Anim Reprod ; 15(Suppl 1): 899-911, 2018.
Article in English | MEDLINE | ID: mdl-36249854

ABSTRACT

Beef cows and ewes grazing native pastures are exposed to cycles of undernutrition that reflect the seasonal variations of biomass production. In grazing dairy cows, the physiological undernutrition during early lactation due to increased demands for lactation and low dry matter intake is exacerbated by the need to get sufficient intake from pasture and the extra grazing energy costs. Undernutrition has profound impacts on reproduction by affecting multiple reproductive processes at different levels of the reproductive axis. The objective of this paper is to review the influence of undernutrition on reproductive events of the adult female ruminant, with emphasis on both grassland and mixed rain-fed grazing farming systems. The comparative endocrinology and reproductive biology among ewes, beef and dairy cows may provide a comprehensive knowledge of the metabolic and reproductive adaptation to feed restriction. Understanding the critical underlying physiological mechanisms by which nutrition affects reproduction is the base of focus feeding strategy to improve the reproductive performance of the female ruminant.

9.
J Sci Food Agric ; 97(8): 2353-2357, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27653319

ABSTRACT

BACKGROUND: The present study aimed to compare wet sorghum distiller's grain (WSDG) with sorghum grain (SG) in terms of: (i) chemical composition; (ii) in situ rumen degradation kinetics of organic matter (OM) and neutral detergent fiber (NDF); (iii) crude protein (CP) sub-fractions; (iv) in situ disappearance at 12 and 48 h; and (v) energy values. The WSDG intestinal digestibility (ID) of undegradable crude protein (UCP) was compared to soybean meal (SBM). RESULTS: Compared to SG, WSDG exhibited: (i) lower (P < 0.01) dry matter and non-fiber carbohydrate content, whereas the other chemical components were higher (P < 0.01); (ii) higher (P < 0.01) degradation rates of OM and NDF and lower (P < 0.01) degradable fraction of OM and NDF; (iii) lower (P < 0.05) contents of CP sub-fractions A, B1 and B2, and higher (P < 0.05) contents of B3 and C; (iv) lower (P < 0.05) protein disappearance at 12 and 48 h and higher UCP; and (v) lower (P < 0.05) energy content. The ID of UCP for WSDG was lower (P < 0.05) compared to SBM. CONCLUSION: The WSDG as a supplement provides a good source of energy. To enable its use as a protein supplement, further studies should be performed. © 2016 Society of Chemical Industry.


Subject(s)
Animal Feed/analysis , Cattle , Nutritive Value , Sorghum/chemistry , Animals , Dietary Fiber/analysis , Dietary Proteins/analysis , Female , Rumen/metabolism , Glycine max
10.
Acta Vet Scand ; 57: 70, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26475473

ABSTRACT

BACKGROUND: In dairy mixed production systems, maximizing pasture intake and total mixed ration (TMR) supplementation are management tools used to increase dry matter and energy intake in early lactation. The objective was to evaluate metabolic and endocrine profiles and hepatic gene expression of Holstein cows fed either TMR ad libitum (without grazing) or diets combining TMR (50 % ad libitum DM intake) and pasture with different grazing strategies (6 h in one grazing session or 9 h in two grazing sessions) in early lactation. Pluriparous cows were grouped by calving date, blocked within group by body weight and body condition score (BCS) and randomly assigned to one of three feeding strategies from calving (day 0) to 60 days postpartum: control cows fed TMR ad libitum (G0; confined cows fed 100 % TMR without access to pasture), pasture grazing with 6 h of access in one session supplemented with 50 % TMR (G1), and 9 h of access in two sessions supplemented with 50 % TMR (G2). RESULTS: Net energy (NE), but not metabolizable protein (MP), demands for maintenance and/or milk increased in G2 when compared with G1 and G0 cows, respectively. However, NE and MP balances were lower in G1 and G2 than G0 cows. Cow BCS at +55 days was greater in G0 than G2 cows and probability of cows cycling during the first month was greater in G0 and G1 than G2 cows. During the postpartum period, non-esterified fatty acids were greater in G1 than G2 and G0 and ß-hydroxybutyrate was greater in G1 and G2 than G0 cows. Plasma insulin was greater and insulin-like growth factor (IGF)-I tended to be greater in G0 than G2 cows, leptin was greater in G2 and G0 and adiponectin were greater in G2 cows. Hepatic expression of growth hormonereceptor-1A and IGF1 mRNA decreased while IGF binding proteins 1,2,4,5 and 6 (IGFBP) mRNA as well as mRNA expression of insulin, leptin (LEPRb) and adiponectin-2 receptors increased from pre to postpartum in all cows. However, only hepatic IGFBP6 and LEPRb mRNA were greater in G2 than G0 and G1 cows, respectively. CONCLUSION: Metabolic-endocrine profiles of cows with different feeding strategies in early lactation reflected not only changes in milk energy output and energy balance but also in walking and grazing activity. Concentrations of insulin and IGF-I were increased in G0 cows whereas plasma adiponectin and both, insulin and leptin sensitivity were improved G2 cows. Increased NE demands in G2 cows when compared to G1 and G0 cows, implied a metabolic stress that impacted negatively on reproductive function.


Subject(s)
Animal Husbandry/methods , Cattle/physiology , Energy Metabolism , Gene Expression Regulation , Hormones/blood , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Female , Liver
11.
Sci Total Environ ; 419: 44-53, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22285079

ABSTRACT

Two experiments were conducted to evaluate Se accumulation and health of non-pregnant, non-breeding beef cattle grazing on forages with a high Se content due to irrigation with saline drainage water. Heifers grazed experimental pastures of "Jose" tall wheatgrass (TWG; Thinopyrum ponticum var. "Jose") and creeping wildrye (CWR; Leymus triticoides var. "Rio") for 190 days in Experiment 1 (2007) and for 165 days in Experiment 2 (2008). In experiment 1, mean Se concentrations were similar in TWG and CWR herbage (4.0 versus 3.7 ± 0.26 mg/kg dry weight; p=0.34) as was crude protein (113 versus 114 ± 7.9 g/kg dry weight; p=0.94). Concentrations of Se in blood increased by 300% during the grazing period, and were similar for heifers grazing the TWG or CWR pastures (0.94 versus 0.87 ± 0.03 mg/kg; p=0.89). Heifers grazing on TWG gained more body weight than did heifers grazing on CWR (0.59 versus 0.27 ± 0.07 kg/days; p<0.01). In experiment 2, concentration of Se (4.0 versus 2.8 mg/kg ± 0.19 mg/kg dry weight; p<0.01) and crude protein (79 versus 90 ± 5.6 g/kg dry weight; p<0.01) differed, for TWG and CWR, respectively. Within 20 days, Se concentrations in blood had increased by 300% and by nearly 200% in heifers grazing on TWG or CWR. All data cited are least square means ± standard error of the mean. Data from our two grazing seasons are consistent in demonstrating the safety of grazing beef cattle for a period of up to 6 months on TWG and CWR forages having high levels of Se due to irrigation with saline drainage water. This suggests that forage production using saline drainage water is a viable alternative for saline soils with limited potential for producing high value, salt-sensitive, crops.


Subject(s)
Animal Feed/analysis , Cattle/growth & development , Cattle/metabolism , Selenium/metabolism , Animal Nutritional Physiological Phenomena , Animals , California , Cattle/blood , Liver/chemistry , Muscle, Skeletal/chemistry , Poaceae/chemistry , Random Allocation , Seasons , Selenium/analysis , Selenium/blood , Soil/chemistry , Spectrophotometry, Atomic , Water/chemistry , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL