Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Nat Commun ; 15(1): 8401, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333488

ABSTRACT

Invasive pneumococcal disease (IPD) due to non-vaccine serotypes after the introduction of pneumococcal conjugate vaccines (PCV) remains a global concern. This study used pathogen genomics to evaluate changes in invasive pneumococcal lineages before, during and after vaccine introduction in South Africa. We included genomes (N = 3104) of IPD isolates from individuals aged <18 years (2005-20), spanning four periods: pre-PCV, PCV7, early-PCV13, and late-PCV13. Significant incidence reductions occurred among vaccine-type lineages in the late-PCV13 period compared to the pre-PCV period. However, some vaccine-type lineages continued to cause invasive disease and showed increasing effective population size trends in the post-PCV era. A significant increase in lineage diversity was observed from the PCV7 period to the early-PCV13 period (Simpson's diversity index: 0.954, 95% confidence interval 0.948-0.961 vs 0.965, 0.962-0.969) supporting intervention-driven population structure perturbation. Increases in the prevalence of penicillin, erythromycin, and multidrug resistance were observed among non-vaccine serotypes in the late-PCV13 period compared to the pre-PCV period. In this work we highlight the importance of continued genomic surveillance to monitor disease-causing lineages post vaccination to support policy-making and future vaccine designs and considerations.


Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Vaccines, Conjugate , Humans , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Pneumococcal Infections/immunology , South Africa/epidemiology , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/isolation & purification , Child , Child, Preschool , Vaccines, Conjugate/immunology , Infant , Serogroup , Adolescent , Penicillins , Erythromycin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Male , Female , Genome, Bacterial
2.
J Infect Dis ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259351

ABSTRACT

BACKGROUND: The Centers for Disease Control and Prevention's Active Bacterial Core surveillance (ABCs) identified increased serotype 4 invasive pneumococcal disease (IPD), particularly among adults experiencing homelessness (AEH). METHODS: We quantified IPD cases during 2016-2022. Employing genomic-based characterization of IPD isolates, we identified serotype-switch variants. Recombinational analyses were used to identify the genetic donor and recipient strains that generated a serotype 4 progeny strain. We performed phylogenetic analyses of the serotype 4 progeny and serotype 12F genetic recipient to determine genetic distances. RESULTS: We identified 30 inter-related (0-21 nucleotide differences) IPD isolates recovered during 2022-2023, corresponding to a serotype 4 capsular-switch variant. This strain arose through a multi-fragment recombination event between serotype 4/ST10172 and serotype 12F/ST220 parental strains. Twenty-five of the 30 cases occurred within Oregon. Of 29 cases with known residence status, 16 occurred in AEH. Variant emergence coincided with a 2.6-fold increase (57 to 148) of cases caused by the serotype 4/ST10172 donor lineage in 2022 compared to 2019 and its first appearance in Oregon. Most serotypes showed sequential increases of AEH IPD/all IPD ratios during 2016-2022 (for all serotypes combined, 247/2198, 11.2% during 2022 compared to 405/5317, 7.6% for 2018-2019, p<0.001). Serotypes 4 and 12F each caused more IPD than any other serotypes in AEH during 2020-2022 (207 combined reported cases primarily in 4 western states accounting for 38% of IPD in AEH). CONCLUSION: Expansion and increased transmission of serotypes 4 and 12F among adults potentially led to recent genesis of an impactful hybrid "serotype-switch" variant.

3.
J Infect Dis ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116351

ABSTRACT

We report a single case of invasive pneumococcal disease (IPD) by serotype 4, multilocus sequence type 10172 (serotype 4/ST10172) isolate with vanG-type resistance genes and reduced vancomycin susceptibility. The isolate was recovered during 2022 from a 66-year-old resident with bacteremic pneumococcal pneumonia within a CDC Active Bacterial Core surveillance (ABCs) site hospital. The patient had received 23-valent pneumococcal polysaccharide vaccine and there was no evidence of concurrent or prior receipt of vancomycin in the previous year. Serotype 4/ST10172 IPD has shown increases within western ABCs sites and the recent acquisition of a vanG element warrants close monitoring of this lineage.

4.
Infect Control Hosp Epidemiol ; : 1-3, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741562

ABSTRACT

A healthcare-associated group A Streptococcus outbreak involving six patients, four healthcare workers, and one household contact occurred in the labor and delivery unit of an academic medical center. Isolates were highly related by whole genome sequencing. Infection prevention measures, healthcare worker screening, and chemoprophylaxis of those colonized halted further transmission.

5.
Vaccine ; 42(16): 3555-3563, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38704263

ABSTRACT

BACKGROUND: A U.S. case-control study (2010-2014) demonstrated vaccine effectiveness (VE) for ≥ 1 dose of the thirteen-valent pneumococcal conjugate vaccine (PCV13) against vaccine-type (VT) invasive pneumococcal disease (IPD) at 86 %; however, it lacked statistical power to examine VE by number of doses and against individual serotypes. METHODS: We used the indirect cohort method to estimate PCV13 VE against VT-IPD among children aged < 5 years in the United States from May 1, 2010 through December 31, 2019 using cases from CDC's Active Bacterial Core surveillance, including cases enrolled in a matched case-control study (2010-2014). Cases and controls were defined as individuals with VT-IPD and non-PCV13-type-IPD (NVT-IPD), respectively. We estimated absolute VE using the adjusted odds ratio of prior PCV13 receipt (1-aOR x 100 %). RESULTS: Among 1,161 IPD cases, 223 (19.2 %) were VT cases and 938 (80.8 %) were NVT controls. Of those, 108 cases (48.4 %; 108/223) and 600 controls (64.0 %; 600/938) had received > 3 PCV13 doses; 23 cases (17.6 %) and 15 controls (2.4 %) had received no PCV doses. VE ≥ 3 PCV13 doses against VT-IPD was 90.2 % (95 % Confidence Interval75.4-96.1 %), respectively. Among the most commonly circulating VT-IPD serotypes, VE of ≥ 3 PCV13 doses was 86.8 % (73.7-93.3 %), 50.2 % (28.4-80.5 %), and 93.8 % (69.8-98.8 %) against serotypes 19A, 3, and 19F, respectively. CONCLUSIONS: At least three doses of PCV13 continue to be effective in preventing VT-IPD among children aged < 5 years in the US. PCV13 was protective against serotypes 19A and 19F IPD; protection against serotype 3 IPD did not reach statistical significance.


Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , United States/epidemiology , Child, Preschool , Infant , Female , Male , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/classification , Case-Control Studies , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Vaccine Efficacy/statistics & numerical data , Cohort Studies , Infant, Newborn , Vaccination/statistics & numerical data
6.
mBio ; 15(5): e0069324, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587426

ABSTRACT

Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.


Subject(s)
Genetic Variation , Genotype , Streptococcus pyogenes , Streptococcus pyogenes/genetics , Streptococcus pyogenes/classification , Humans , Recombination, Genetic , Bacterial Outer Membrane Proteins/genetics , Fimbriae Proteins/genetics , Gene Transfer, Horizontal , Antigens, Bacterial/genetics , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Impetigo/microbiology , Impetigo/epidemiology , Pharyngitis/microbiology , Fimbriae, Bacterial/genetics , Carrier Proteins
7.
Sci Rep ; 13(1): 21510, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057343

ABSTRACT

Group A streptococcal strains potentially acquire new M protein gene types through genetic recombination (emm switching). To detect such variants, we screened 12,596 invasive GAS genomes for strains of differing emm types that shared the same multilocus sequence type (ST). Through this screening we detected a variant consisting of 16 serum opacity factor (SOF)-positive, emm pattern E, emm82 isolates that were ST36, previously only associated with SOF-negative, emm pattern A, emm12. The 16 emm82/ST36 isolates were closely interrelated (pairwise SNP distance of 0-43), and shared the same emm82-containing recombinational fragment. emm82/ST36 isolates carried the sof12 structural gene, however the sof12 indel characteristic of emm12 strains was corrected to confer the SOF-positive phenotype. Five independent emm82/ST36 invasive case isolates comprised two sets of genetically indistinguishable strains. The emm82/ST36 isolates were primarily macrolide resistant (12/16 isolates), displayed at least 4 different core genomic arrangements, and carried 11 different combinations of virulence and resistance determinants. Phylogenetic analysis revealed that emm82/ST36 was within a minor (non-clade 1) portion of ST36 that featured almost all ST36 antibiotic resistance. This work documents emergence of a rapidly diversifying variant that is the first confirmed example of an emm pattern A strain switched to a pattern E strain.


Subject(s)
Streptococcal Infections , Streptococcus pyogenes , Humans , Streptococcal Infections/drug therapy , Phylogeny , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Genomics , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Genotype
9.
Emerg Infect Dis ; 29(10): 2116-2120, 2023 10.
Article in English | MEDLINE | ID: mdl-37640370

ABSTRACT

From 2015-2018 to 2019‒2021, hypertoxigenic M1UK lineage among invasive group A Streptococcus increased in the United States (1.7%, 21/1,230 to 11%, 65/603; p<0.001). M1UK was observed in 9 of 10 states, concentrated in Georgia (n = 41), Tennessee (n = 13), and New York (n = 13). Genomic cluster analysis indicated recent expansions.


Subject(s)
Streptococcus pyogenes , Georgia , New York , Tennessee , Streptococcus pyogenes/genetics , United Kingdom
10.
Microb Genom ; 9(4)2023 04.
Article in English | MEDLINE | ID: mdl-37083600

ABSTRACT

The introduction of pneumococcal conjugate vaccines (PCV7, PCV10, PCV13) around the world has proved successful in preventing invasive pneumococcal disease. However, immunization against Streptococcus pneumoniae has led to serotype replacement by non-vaccine serotypes, including serotype 15A. Clonal complex 63 (CC63) is associated with many serotypes and has been reported in association with 15A after introduction of PCVs. A total of 865 CC63 isolates were included in this study, from the USA (n=391) and a global collection (n=474) from 1998-2019 and 1995-2018, respectively. We analysed the genomic sequences to identify serotypes and penicillin-binding protein (PBP) genes 1A, 2B and 2X, and other resistance determinants, to predict minimum inhibitory concentrations (MICs) against penicillin, erythromycin, clindamycin, co-trimoxazole and tetracycline. We conducted phylogenetic and spatiotemporal analyses to understand the evolutionary history of the 15A-CC63 sub-lineage. Overall, most (89.5 %, n=247) pre-PCV isolates in the CC63 cluster belonged to serotype 14, with 15A representing 6.5 % of isolates. Conversely, serotype 14 isolates represented 28.2 % of post-PCV CC63 isolates (n=618), whilst serotype 15A isolates represented 65.4 %. Dating of the CC63 lineage determined the most recent common ancestor emerged in the 1980s, suggesting the 15A-CC63 sub-lineage emerged from its closest serotype 14 ancestor prior to the development of pneumococcal vaccines. This sub-lineage was predominant in the USA, Israel and China. Multidrug resistance (to three or more drug classes) was widespread among isolates in this sub-lineage. We show that the CC63 lineage is globally distributed and most of the isolates are penicillin non-susceptible, and thus should be monitored.


Subject(s)
Penicillins , Streptococcus pneumoniae , Vaccines, Conjugate , Phylogeny , Penicillins/pharmacology , Genomics
12.
Clin Infect Dis ; 76(3): e1266-e1269, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35684991

ABSTRACT

We analyzed 9630 invasive GAS surveillance isolates in the USA. From 2015-2017 to 2018-2019, significant increases in erythromycin-nonsusceptibility (18% vs 25%) and clindamycin-nonsusceptibility (17% vs 24%) occurred, driven by rapid expansions of genomic subclones. Prevention and control of clustered infections appear key to containing antimicrobial resistance.


Subject(s)
Clindamycin , Streptococcal Infections , Humans , United States/epidemiology , Clindamycin/pharmacology , Erythromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Streptococcus pyogenes/genetics , Genomics , Streptococcal Infections/drug therapy , Streptococcal Infections/epidemiology , Drug Resistance, Bacterial/genetics
13.
Clin Pediatr (Phila) ; 62(2): 96-99, 2023 02.
Article in English | MEDLINE | ID: mdl-35883267

ABSTRACT

To our knowledge, late, late-onset group B streptococcal (GBS) meningitis in identical twins has yet to be reported. We describe a case of 14-week-old twins who developed fever hours apart and presented simultaneously to the emergency department 2 days later with seizures. Blood and cerebrospinal fluid (CSF) cultures from both infants were positive for GBS. Their clinical courses were highly similar, with magnetic resonance imaging (MRI) demonstrating ventriculitis and subdural empyema, complicated by clinical and subclinical seizures requiring quadruple antiepileptic treatment. The CSF was sterile for both on follow-up lumbar puncture 48 hours after the initial positive CSF culture. Both showed marked improvement on antimicrobial and antiepileptic therapy, with fever resolving after 5 days of therapy, control of seizures, and slowly improving MRI findings. Twin A received a 6-week course of penicillin, whereas twin B received 6 weeks plus an additional 10 days due to persistent left cochlear enhancement consistent with labyrinthitis. Evaluation for an underlying primary immunodeficiency was negative. Genomic analysis revealed that the patients' CSF GBS isolates were essentially identical and of capsular polysaccharide serotype Ia.


Subject(s)
Meningitis, Bacterial , Streptococcal Infections , Infant , Humans , Streptococcus agalactiae , Twins, Monozygotic , Anticonvulsants/therapeutic use , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/cerebrospinal fluid , Seizures , Streptococcal Infections/complications , Streptococcal Infections/diagnosis , Streptococcal Infections/drug therapy , Anti-Bacterial Agents/therapeutic use
14.
MMWR Morb Mortal Wkly Rep ; 71(37): 1169-1173, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36107787

ABSTRACT

In May 2022, CDC learned of three children in California hospitalized concurrently for brain abscess, epidural empyema, or subdural empyema caused by Streptococcus intermedius. Discussions with clinicians in multiple states raised concerns about a possible increase in pediatric intracranial infections, particularly those caused by Streptococcus bacteria, during the past year and the possible contributing role of SARS-CoV-2 infection (1). Pediatric bacterial brain abscesses, epidural empyemas, and subdural empyemas, rare complications of respiratory infections and sinusitis, are often caused by Streptococcus species but might also be polymicrobial or caused by other genera, such as Staphylococcus. On June 9, CDC asked clinicians and health departments to report possible cases of these conditions and to submit clinical specimens for laboratory testing. Through collaboration with the Children's Hospital Association (CHA), CDC analyzed nationally representative pediatric hospitalizations for brain abscess and empyema. Hospitalizations declined after the onset of the COVID-19 pandemic in March 2020, increased during summer 2021 to a peak in March 2022, and then declined to baseline levels. After the increase in summer 2021, no evidence of higher levels of intensive care unit (ICU) admission, mortality, genetic relatedness of isolates from different patients, or increased antimicrobial resistance of isolates was observed. The peak in cases in March 2022 was consistent with historical seasonal fluctuations observed since 2016. Based on these findings, initial reports from clinicians (1) are consistent with seasonal fluctuations and a redistribution of cases over time during the COVID-19 pandemic. CDC will continue to work with investigation partners to monitor ongoing trends in pediatric brain abscesses and empyemas.


Subject(s)
Anti-Infective Agents , Brain Abscess , COVID-19 , Empyema, Subdural , Empyema , Epidural Abscess , Brain Abscess/epidemiology , Brain Abscess/microbiology , Child , Empyema, Subdural/epidemiology , Humans , Pandemics , SARS-CoV-2 , Streptococcus , United States/epidemiology
15.
Antimicrob Agents Chemother ; 66(9): e0080222, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35969070

ABSTRACT

All known group A streptococci [GAS] are susceptible to ß-lactam antibiotics. We recently identified an invasive GAS (iGAS) variant (emm43.4/PBP2x-T553K) with unusually high minimum inhibitory concentrations (MICs) for ampicillin and amoxicillin, although clinically susceptible to ß-lactams. We aimed to quantitate PBP2x variants, small changes in ß-lactam MICs, and lineages within contemporary population-based iGAS. PBP2x substitutions were comprehensively identified among 13,727 iGAS recovered during 2015-2021, in the USA. Isolates were subjected to antimicrobial susceptibility testing employing low range agar diffusion and PBP2x variants were subjected to phylogenetic analyses. Fifty-five variants were defined based upon substitutions within an assigned PBP2x transpeptidase domain. Twenty-nine of these variants, representing 338/13,727 (2.5%) isolates and 16 emm types, exhibited slightly elevated ß-lactam MICs, none of which were above clinical breakpoints. The emm43.4/PBP2x-T553K variant, comprised of two isolates, displayed the most significant phenotype (ampicillin MIC 0.25 µg/ml) and harbored missense mutations within 3 non-PBP genes with known involvement in antibiotic efflux, membrane insertion of PBP2x, and peptidoglycan remodeling. The proportion of all PBP2x variants with elevated MICs remained stable throughout 2015-2021 (<3.0%). The predominant lineage (emm4/PBP2x-M593T/ermT) was resistant to macrolides/lincosamides and comprised 129/340 (37.9%) of isolates with elevated ß-lactam MICs. Continuing ß-lactam selective pressure is likely to have selected PBP2x variants that had escaped scrutiny due to MICs that remain below clinical cutoffs. Higher MICs exhibited by emm43.4/PBP2x-T553K are probably rare due to the requirement of additional mutations. Although elevated ß-lactam MICs remain uncommon, emm43.4/PBP2x-T553K and emm4/PBP2x-M593T/ermT lineages indicate that antibiotic stewardship and strain monitoring is necessary.


Subject(s)
Peptidyl Transferases , Agar , Amoxicillin , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Lincosamides , Macrolides , Microbial Sensitivity Tests , Monobactams , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Peptidoglycan , Peptidyl Transferases/genetics , Phylogeny , Streptococcus pneumoniae/genetics , Streptococcus pyogenes/genetics , United States , beta-Lactam Resistance/genetics , beta-Lactams/pharmacology
16.
J Infect Dis ; 226(3): 546-553, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35511035

ABSTRACT

BACKGROUND: Group A streptococci (GAS), although usually responsible for mild infections, can sometimes spread into normally sterile sites and cause invasive GAS disease (iGAS). Because both the risk of iGAS disease and occurrence of outbreaks are elevated within certain communities, such as those comprising people who inject drugs (PWID) and people experiencing homelessness (PEH), understanding the transmission dynamics of GAS is of major relevance to public health. METHODS: We used a cluster detection tool to scan genomes of 7552 Streptococcus pyogenes isolates acquired through the population-based Active Bacterial Core surveillance (ABCs) during 2015-2018 to identify genomically related clusters representing previously unidentified iGAS outbreaks. RESULTS: We found that 64.6% of invasive isolates were included within clusters of at least 4 temporally related isolates. Calculating a cluster odds ratio (COR) for each emm type revealed that types vary widely in their propensity to form transmission clusters. By incorporating additional epidemiological metadata for each isolate, we found that emm types with a higher proportion of cases occurring among PEH and PWID were associated with higher CORs. Higher CORs were also correlated with emm types that are less geographically dispersed. CONCLUSIONS: Early identification of clusters with implementation of outbreak control measures could result in significant reduction of iGAS.


Subject(s)
Streptococcal Infections , Substance Abuse, Intravenous , Antigens, Bacterial , Bacterial Outer Membrane Proteins , Disease Outbreaks , Humans , Streptococcus pyogenes , United States
17.
J Infect Dis ; 226(2): 332-341, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35172327

ABSTRACT

BACKGROUND: Invasive pneumococcal disease (IPD) isolates forming genomic clusters can reflect rapid disease transmission between vulnerable individuals. METHODS: We performed whole genome sequencing of 2820 IPD isolates recovered during 2019 through Centers for Disease Control and Prevention's Active Bacterial Core surveillance to provide strain information (serotypes, resistance, genotypes), and 2778 of these genomes were analyzed to detect highly related genomic clusters. RESULTS: Isolates from persons experiencing homelessness (PEH) were more often within genomic clusters than those from persons not experiencing homelessness (PNEH) (105/198 [53.0%] vs 592/2551 [23.2%]; P < .001). The 4 western sites accounted for 33.4% (929/2778) of isolates subjected to cluster analysis yet accounted for 48.7% (343/705) of clustering isolates (P < .001) and 75.8% (150/198) of isolates recovered from PEH (P < .001). Serotypes most frequent among PEH were (in rank order) 12F, 4, 3, 9N, 8, 20, and 22F, all of which were among the 10 serotypes exhibiting the highest proportions of clustering isolates among all cases. These serotypes accounted for 44.9% (1265/2820) of all IPD cases and are included within available vaccines. CONCLUSIONS: We identified serotype-specific and geographic differences in IPD transmission. We show the vulnerability of PEH within different regions to rapidly spreading IPD transmission networks representing several pneumococcal serotypes included in available vaccines.


Subject(s)
Drug Users , Ill-Housed Persons , Pneumococcal Infections , Humans , Infant , Pneumococcal Infections/microbiology , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , United States/epidemiology
18.
J Infect Dis ; 225(10): 1841-1851, 2022 05 16.
Article in English | MEDLINE | ID: mdl-34788828

ABSTRACT

BACKGROUND: The genomic features and transmission link of circulating Group A Streptococcus (GAS) strains causing different disease types, such as pharyngitis and invasive disease, are not well understood. METHODS: We used whole-genome sequencing to characterize GAS isolates recovered from persons with pharyngitis and invasive disease in the Denver metropolitan area from June 2016 to April 2017. RESULTS: The GAS isolates were cultured from 236 invasive and 417 pharyngitis infections. Whole-genome sequencing identified 34 emm types. Compared with pharyngitis isolates, invasive isolates were more likely to carry the erm family genes (23% vs 7.4%, P<.001), which confer resistance to erythromycin and clindamycin (including inducible resistance), and covS gene inactivation (7% vs 0.5%, P<.001). Whole-genome sequencing identified 97 genomic clusters (433 isolates; 2-65 isolates per cluster) that consisted of genomically closely related isolates (median single-nucleotide polymorphism=3 [interquartile range, 1-4] within cluster). Thirty genomic clusters (200 isolates; 31% of all isolates) contained both pharyngitis and invasive isolates and were found in 11 emm types. CONCLUSIONS: In the Denver metropolitan population, mixed disease types were commonly seen in clusters of closely related isolates, indicative of overlapping transmission networks. Antibiotic-resistance and covS inactivation was disproportionally associated with invasive disease.


Subject(s)
Pharyngitis , Streptococcal Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colorado/epidemiology , Drug Resistance, Bacterial/genetics , Genomics , Humans , Pharyngitis/drug therapy , Pharyngitis/epidemiology , Streptococcal Infections/drug therapy , Streptococcal Infections/epidemiology , Streptococcus pyogenes
19.
J Infect Dis ; 224(12 Suppl 2): S248-S257, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34469560

ABSTRACT

BACKGROUND: Streptococcus pneumoniae, or pneumococcus, is a leading cause of morbidity and mortality in children worldwide. Pneumococcal conjugate vaccines (PCV) reduce carriage in the nasopharynx, preventing disease. We conducted a pneumococcal carriage study to estimate the prevalence of pneumococcal colonization, identify risk factors for colonization, and describe antimicrobial susceptibility patterns among pneumococci colonizing young children in Port-au-Prince, Haiti, before introduction of 13-valent PCV (PCV13). METHODS: We conducted a cross-sectional study of children aged 6-24 months at an immunization clinic in Port-au-Prince between September 2015 and January 2016. Consenting parents were interviewed about factors associated with pneumococcal carriage; nasopharyngeal swabs were collected from each child and cultured for pneumococcus after broth enrichment. Pneumococcal isolates were serotyped and underwent antimicrobial susceptibility testing. We compared frequency of demographic, clinical, and environmental factors among pneumococcus-colonized children (carriers) to those who were not colonized (noncarriers) using unadjusted bivariate analysis and multivariate logistic regression. RESULTS: Pneumococcus was isolated from 308 of the 685 (45.0%) children enrolled. Overall, 157 isolates (50.8%) were PCV13 vaccine-type serotypes; most common were 6A (13.3%), 19F (12.6%), 6B (9.7%), and 23F (6.1%). Vaccine-type isolates were significantly more likely to be nonsusceptible to ≥1 antimicrobial (63.1% vs 45.4%, P = .002). On bivariate analysis, carriers were significantly more likely than noncarriers to live in a household without electricity or running water, to share a bedroom with ≥3 people, to have a mother or father who did not complete secondary education, and to have respiratory symptoms in the 24 hours before enrollment (P < .05 for all comparisons). On multivariable analysis, completion of the pentavalent vaccination series (targeting diphtheria, pertussis, tetanus, hepatitis B, and Haemophilus influenzae type b) remained significantly more common among noncarriers. CONCLUSIONS: Nearly a quarter of healthy children surveyed in Haiti were colonized with vaccine-type pneumococcal serotypes. This baseline carriage study will enable estimation of vaccine impact following nationwide introduction of PCV13.


Subject(s)
Carrier State/epidemiology , Carrier State/microbiology , Nasopharynx/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Child, Preschool , Cross-Sectional Studies , Female , Haiti/epidemiology , Humans , Infant , Male , Serogroup
20.
Emerg Infect Dis ; 27(7): 1949-1952, 2021 07.
Article in English | MEDLINE | ID: mdl-34152958

ABSTRACT

A pneumococcal disease outbreak caused by Streptococcus pneumoniae serotype 12F occurred in a state prison in Alabama, USA. Among 1,276 inmates, 40 cases were identified (3 confirmed, 2 probable, 35 suspected). Close living quarters, substance use, and underlying conditions likely contributed to disease risk. Prophylaxis for close contacts included azithromycin and 23-valent pneumococcal polysaccharide vaccine.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Alabama , Disease Outbreaks , Humans , Pneumococcal Infections/epidemiology , Pneumococcal Vaccines , Prisons , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL