Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Environ Pollut ; 360: 124654, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39098638

ABSTRACT

Microplastics (MPs) enter lakes through various pathways, including effluents from wastewater treatment plants (WWTPs), surface runoff, and improperly disposed of plastic waste. In this study, the extent of MPs pollution in Uiam Lake in fall of 2022 and spring of 2023 was assessed by determining both the number (n/m3) and mass concentrations (µg/m3) of MPs. Moreover, the correlation between water quality parameters and MP properties was analyzed, and an ecological risk assessment was conducted. MPs abundance was higher in spring than in fall, probably due to the lifting of coronavirus disease-19 restrictions, melting of ice, higher rainfall, and faster wind speed. Fragment was the dominant shape of the MPs collected, while polyvinyl chloride (PVC) and polyester/polyethylene terephthalate were the frequently detected polymer types of MPs in fall and spring, respectively. There was a moderate positive correlation between the number concentration of MPs and the total nitrogen, total phosphorus (T-P), and total organic carbon levels; in contrast, there was no significant relationship between the mass concentration of MPs and all water quality parameters. However, the abundance (µg/m3) of PVC and polymethyl methacrylate MPs were positively correlated with T-P and electrical conductivity. The pollution load index, polymer hazard index, and potential ecological risk index (PERI) were generally higher when the mass unit of MPs was used due to the presence of large-sized MPs composed of highly hazardous polymers (e.g., polyurethane, PVC, and alkyd). For instance, the PERI value of the WWTP effluent was at the very high level (>1200) in both seasons, regardless of the abundance unit of MPs. Therefore, WWTP effluents may have increased the ecological toxicity of MPs pollution in Uiam Lake.


Subject(s)
Environmental Monitoring , Lakes , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Lakes/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring/methods , Republic of Korea
2.
Exp Mol Med ; 56(8): 1856-1868, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138315

ABSTRACT

Genomic alterations in tumors play a pivotal role in determining their clinical trajectory and responsiveness to treatment. Targeted panel sequencing (TPS) has served as a key clinical tool over the past decade, but advancements in sequencing costs and bioinformatics have now made whole-genome sequencing (WGS) a feasible single-assay approach for almost all cancer genomes in clinical settings. This paper reports on the findings of a prospective, single-center study exploring the real-world clinical utility of WGS (tumor and matched normal tissues) and has two primary objectives: (1) assessing actionability for therapeutic options and (2) providing clarity for clinical questions. Of the 120 patients with various solid cancers who were enrolled, 95 (79%) successfully received genomic reports within a median of 11 working days from sampling to reporting. Analysis of these 95 WGS reports revealed that 72% (68/95) yielded clinically relevant insights, with 69% (55/79) pertaining to therapeutic actionability and 81% (13/16) pertaining to clinical clarity. These benefits include the selection of informed therapeutics and/or active clinical trials based on the identification of driver mutations, tumor mutational burden (TMB) and mutational signatures, pathogenic germline variants that warrant genetic counseling, and information helpful for inferring cancer origin. Our findings highlight the potential of WGS as a comprehensive tool in precision oncology and suggests that it should be integrated into routine clinical practice to provide a complete image of the genomic landscape to enable tailored cancer management.


Subject(s)
Neoplasms , Precision Medicine , Whole Genome Sequencing , Humans , Neoplasms/genetics , Neoplasms/therapy , Whole Genome Sequencing/methods , Precision Medicine/methods , Female , Male , Middle Aged , Aged , Mutation , Adult , Genomics/methods , Aged, 80 and over , Biomarkers, Tumor/genetics , High-Throughput Nucleotide Sequencing/methods , Prospective Studies , Medical Oncology/methods , Genome, Human
3.
Article in English | MEDLINE | ID: mdl-38862433

ABSTRACT

During the last decade, the generation and accumulation of petabase-scale high-throughput sequencing data have resulted in great challenges, including access to human data, as well as transfer, storage, and sharing of enormous amounts of data. To promote data-driven biological research, the Korean government announced that all biological data generated from government-funded research projects should be deposited at the Korea BioData Station (K-BDS), which consists of multiple databases for individual data types. Here, we introduce the Korean Nucleotide Archive (KoNA), a repository of nucleotide sequence data. As of July 2022, the Korean Read Archive in KoNA has collected over 477 TB of raw next-generation sequencing data from national genome projects. To ensure data quality and prepare for international alignment, a standard operating procedure was adopted, which is similar to that of the International Nucleotide Sequence Database Collaboration. The standard operating procedure includes quality control processes for submitted data and metadata using an automated pipeline, followed by manual examination. To ensure fast and stable data transfer, a high-speed transmission system called GBox is used in KoNA. Furthermore, the data uploaded to or downloaded from KoNA through GBox can be readily processed using a cloud computing service called Bio-Express. This seamless coupling of KoNA, GBox, and Bio-Express enhances the data experience, including submission, access, and analysis of raw nucleotide sequences. KoNA not only satisfies the unmet needs for a national sequence repository in Korea but also provides datasets to researchers globally and contributes to advances in genomics. The KoNA is available at https://www.kobic.re.kr/kona/.


Subject(s)
Databases, Nucleic Acid , Republic of Korea , Humans , High-Throughput Nucleotide Sequencing/methods
4.
Small ; 20(40): e2402528, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38845027

ABSTRACT

The crystal structure and phase stability of a host lattice plays an important role in efficient upconversion phenomena. In stable hosts, lanthanides doping should not generally change the crystal structure of the host itself. But when phase of a system drastically changes after lanthanide doping resulting in multiple phases, accurate identification of upconverting phase remains a challenge. Herein, an attempt to synthesize lanthanide-doped NiMoO4 by microwave hydrothermal method produced MoO3/Yb2Mo4O15/NiMoO4 micro-nano composite upconversion phosphor. A combined approach of density functional theory (DFT) calculations and single-particle-level upconversion imaging has been employed to elucidate the phase stability of different phases and upconversion properties within the composite. Through single-particle-level imaging under 980 nm excitation, an unprecedented resolution in visualizing individual emitting and non-emitting regions within the composite has been achieved, thereby allowing to accurately assign the Yb2Mo4O15 as a sole upconversion emitting phase in the composite. Result of the DFT calculation further shows that the Yb2Mo4O15 phase is the most thermodynamically preferred over other lanthanide-doped phases in the composite. This comprehensive understanding not only advances the knowledge of upconversion emission from composite materials but also holds promise for tailoring optical properties of materials for various applications, including bioimaging, sensing, and photonics, where controlled light emission is crucial.

5.
Nat Metab ; 6(5): 847-860, 2024 May.
Article in English | MEDLINE | ID: mdl-38811804

ABSTRACT

Adipose tissues serve as an energy reservoir and endocrine organ, yet the mechanisms that coordinate these functions remain elusive. Here, we show that the transcriptional coregulators, YAP and TAZ, uncouple fat mass from leptin levels and regulate adipocyte plasticity to maintain metabolic homeostasis. Activating YAP/TAZ signalling in adipocytes by deletion of the upstream regulators Lats1 and Lats2 results in a profound reduction in fat mass by converting mature adipocytes into delipidated progenitor-like cells, but does not cause lipodystrophy-related metabolic dysfunction, due to a paradoxical increase in circulating leptin levels. Mechanistically, we demonstrate that YAP/TAZ-TEAD signalling upregulates leptin expression by directly binding to an upstream enhancer site of the leptin gene. We further show that YAP/TAZ activity is associated with, and functionally required for, leptin regulation during fasting and refeeding. These results suggest that adipocyte Hippo-YAP/TAZ signalling constitutes a nexus for coordinating adipose tissue lipid storage capacity and systemic energy balance through the regulation of adipocyte plasticity and leptin gene transcription.


Subject(s)
Adaptor Proteins, Signal Transducing , Adipocytes , Adipose Tissue , Energy Metabolism , Hippo Signaling Pathway , Leptin , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , Leptin/metabolism , Protein Serine-Threonine Kinases/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Adipose Tissue/metabolism , Adipocytes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics
6.
Front Oncol ; 14: 1380599, 2024.
Article in English | MEDLINE | ID: mdl-38715772

ABSTRACT

Introduction: This study aimed to identify CT-based imaging biomarkers for locoregional recurrence (LR) in Oral Cavity Squamous Cell Carcinoma (OSCC) patients. Methods: Computed tomography scans were collected from 78 patients with OSCC who underwent surgical treatment at a single medical center. We extracted 1,092 radiomic features from gross tumor volume in each patient's pre-treatment CT. Clinical characteristics were also obtained, including race, sex, age, tobacco and alcohol use, tumor staging, and treatment modality. A feature selection algorithm was used to eliminate the most redundant features, followed by a selection of the best subset of the Logistic regression model (LRM). The best LRM model was determined based on the best prediction accuracy in terms of the area under Receiver operating characteristic curve. Finally, significant radiomic features in the final LRM model were identified as imaging biomarkers. Results and discussion: Two radiomics biomarkers, Large Dependence Emphasis (LDE) of the Gray Level Dependence Matrix (GLDM) and Long Run Emphasis (LRE) of the Gray Level Run Length Matrix (GLRLM) of the 3D Laplacian of Gaussian (LoG σ=3), have demonstrated the capability to preoperatively distinguish patients with and without LR, exhibiting exceptional testing specificity (1.00) and sensitivity (0.82). The group with LRE > 2.99 showed a 3-year recurrence-free survival rate of 0.81, in contrast to 0.49 for the group with LRE ≤ 2.99. Similarly, the group with LDE > 120 showed a rate of 0.82, compared to 0.49 for the group with LDE ≤ 120. These biomarkers broaden our understanding of using radiomics to predict OSCC progression, enabling personalized treatment plans to enhance patient survival.

7.
Endocrinol Metab (Seoul) ; 39(2): 191-205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572534

ABSTRACT

In the quest to combat insulin-dependent diabetes mellitus (IDDM), allogenic pancreatic islet cell therapy sourced from deceased donors represents a significant therapeutic advance. However, the applicability of this approach is hampered by donor scarcity and the demand for sustained immunosuppression. Human induced pluripotent stem cells are a game-changing resource for generating synthetic functional insulin-producing ß cells. In addition, novel methodologies allow the direct expansion of pancreatic progenitors and mature ß cells, thereby circumventing prolonged differentiation. Nevertheless, achieving practical reproducibility and scalability presents a substantial challenge for this technology. As these innovative approaches become more prominent, it is crucial to thoroughly evaluate existing expansion techniques with an emphasis on their optimization and scalability. This manuscript delineates these cutting-edge advancements, offers a critical analysis of the prevailing strategies, and underscores pivotal challenges, including cost-efficiency and logistical issues. Our insights provide a roadmap, elucidating both the promises and the imperatives in harnessing the potential of these cellular therapies for IDDM.


Subject(s)
Diabetes Mellitus, Type 1 , Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/transplantation , Induced Pluripotent Stem Cells/cytology , Diabetes Mellitus, Type 1/therapy , Islets of Langerhans Transplantation/methods , Cell Differentiation , Insulin/metabolism , Animals , Cell Culture Techniques/methods
8.
Chemosphere ; 356: 141956, 2024 May.
Article in English | MEDLINE | ID: mdl-38604514

ABSTRACT

Emerging micropollutants, such as pharmaceuticals and microplastics (MPs), have become a pressing water environmental concern. The aim of this study is to synthesize chitosan sponges using graphene oxide (GO) and genipin (GP) for the removal of pharmaceuticals (diclofenac (DCF) and triclosan (TCS)) and MPs, verify their adsorption mechanisms, evaluate the effects of temperature, pH, and salinity on their adsorption capacities, and determine their reusability. The GO5/CS/GP sponge exhibited a macroporous nature (porosity = 95%, density = 32.6 mg/cm3). GO and cross-linker GP enhanced the adsorption of DCF, TCS, and polystyrene (PS) MPs onto the CS sponges. The adsorption of DCF, TCS, and PS MPs involved multiple steps: surface diffusion and pore diffusion of the sponge. The adsorption isotherms demonstrated that Langmuir model was the most fitted well model to explain adsorption of TCS (qm = 7.08 mg/g) and PS MPs (qm = 7.42 mg/g) on GO5/CS/GP sponge, while Freundlich model suited for DCF adsorption (qm = 48.58 mg/g). DCF adsorption was thermodynamically spontaneous and endothermic; however, the adsorption of TCS and PS MPs was exothermic (283-313 K). The optimal pH was 5.5-7 due to the surface charge of the GO5/CS/GP sponge (pHzpc = 5.76) and ionization of DCF, TCS, and PS MPs. As the salinity increased, DCF removal efficiency drastically decreased due to the weakening of electrostatic interactions; however, TCS removal efficiency remained stable because TCS adsorption was mainly caused by hydrophobic and π-π interactions rather than electrostatic interaction. The removal of PS MPs was enhanced by the electrostatic screening effects of high Na+ ions. PS nanoplastics (average size = 26 nm) were removed by the GO5/CS/GP sponge at a rate of 73.0%, which was better than that of PS MPs (41.5%). In addition, the GO5/CS/GP sponge could be recycled over five adsorption-desorption cycles.


Subject(s)
Chitosan , Diclofenac , Graphite , Iridoids , Microplastics , Triclosan , Water Pollutants, Chemical , Graphite/chemistry , Diclofenac/chemistry , Chitosan/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Triclosan/chemistry , Microplastics/chemistry , Iridoids/chemistry , Water Purification/methods , Hydrogen-Ion Concentration
9.
Small ; 20(32): e2400031, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38497894

ABSTRACT

Improving the hydroxide conductivity and dimensional stability of anion exchange membranes (AEMs) while retaining their high alkaline stability is necessary to realize the commercialization of AEM water electrolysis (AEMWE). A strategy for improving the hydroxide conductivity and dimensional stability of AEMs by inserting fluorine atoms in the core structure of the backbone is reported, which not only reduces the glass transition temperature of the polymer due to steric strain, but also induces distinct phase separation by inducing polarity discrimination to facilitate the formation of ion transport channels. The resulting PFPFTP-QA AEM with fluorine into the core structure shows high hydroxide conductivity (>159 mS cm-1 at 80 °C), favorable dimensional stability (>25% at 80 °C), and excellent alkaline stability for 1000 h in 2 m KOH solution at 80 °C. Moreover, the PFPFTP-QA is used to construct an AEMWE cell with a platinum group metal (PGM)-free NiFe anode, which exhibits the current density of 6.86 A cm-2 at 1.9 V at 80 °C, the highest performance in Pt/C cathode and PGM-free anode reports so far and operates stably for over 100 h at a constant current of 0.5 A cm-2.

10.
Res Sq ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38343846

ABSTRACT

This study aimed to identify CT-based imaging biomarkers for locoregional recurrence (LR) in Oral Cavity Squamous Cell Carcinoma (OSCC) patients. Our study involved a retrospective review of 78 patients with OSCC who underwent surgical treatment at a single medical center. An approach involving feature selection and statistical model diagnostics was utilized to identify biomarkers. Two radiomics biomarkers, Large Dependence Emphasis (LDE) of the Gray Level Dependence Matrix (GLDM) and Long Run Emphasis (LRE) of the Gray Level Run Length Matrix (GLRLM) of the 3D Laplacian of Gaussian (LoG σ = 3), have demonstrated the capability to preoperatively distinguish patients with and without LR, exhibiting exceptional testing specificity (1.00) and sensitivity (0.82). The group with LRE > 2.99 showed a 3-year recurrence-free survival rate of 0.81, in contrast to 0.49 for the group with LRE ≤ 2.99. Similarly, the group with LDE > 120 showed a rate of 0.82, compared to 0.49 for the group with LDE ≤ 120. These biomarkers broaden our understanding of using radiomics to predict OSCC progression, enabling personalized treatment plans to enhance patient survival.

11.
BMC Cancer ; 24(1): 70, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216948

ABSTRACT

BACKGROUND: Both first and second-generation EGFR-TKIs are recommended in advanced NSCLC with common EGFR mutations. However, there are few data on the difference in efficacy of EGFR-TKIs based on the type of EGFR mutation and agents. METHODS: This retrospective real-world study evaluated the outcomes and clinicopathologic characteristics, including the type of EGFR mutations, of 237 advanced NSCLC patients treated with first- or second-generation (afatinib) EGFR-TKIs as first-line therapy. RESULTS: The median progression-free survival (PFS) and overall survival (OS) of all patients were 11 months (M) and 25M, respectively. In the univariate analysis, patients with exon 19 deletion (del) (n=130) had significantly longer median OS compared to those with other mutations (L858R: 84, others: 23) (30 vs. 22 M, p=0.047), without a difference in PFS (p=0.138). Patients treated with afatinib (n=60) showed significantly longer median OS compared to those treated with first-generation TKIs (gefitinib: 159, erlotinib: 18) (30 vs. 23 M, p=0.037), without a difference in PFS (p=0.179). In patients with exon 19 del, there was no significant difference in median PFS (p=0.868) or OS (p=0.361) between patients treated with afatinib and those treated with first-generation TKIs, while significantly better PFS (p=0.042) and trend in OS (p=0.069) were observed in patients receiving afatinib in other mutations. Exon 19 del was independently associated with favorable OS (p=0.028), while age >70 years (p=0.017), ECOG performance status ≥2 (p=0.001), primary metastatic disease (p=0.007), and synchronous brain metastasis (p=0.026) were independent prognostic factors of poor OS. CONCLUSIONS: The EGFR exon 19 del was associated with favorable OS in advanced NSCLC patients receiving first-line EGFR-TKIs. Moreover, in patients with exon 19 del, first-generation TKIs seem to be a reasonable treatment option if osimertinib is unavailable.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Afatinib/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Retrospective Studies , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/genetics , Mutation
12.
Photodiagnosis Photodyn Ther ; 45: 103912, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043762

ABSTRACT

INTRODUCTION: Laser speckle contrast imaging (LSCI) can achieve real-time 2D perfusion maps non-invasively. However, LSCI is still difficult to use in general clinical applications because of movement sensitivity and limitations in blood flow analysis. To overcome this, fluorescence imaging (FI) is combined with LSCI using a light source with a wavelength of 785 nm in near-infrared (NIR) region and validates to visualize real-time blood perfusion. MATERIALS AND METHODS: The system was performed using Intralipid and indocyanine green (ICG) in a flow phantom that has three tubes and controlled the flow rate in 0-150 µl/min range. First, real-time LSCI was monitored and measured the change in speckle contrast by reperfusion. Then, we visualized blood perfusion of a rabbit ear under the non-invasive condition by intravenous injection using a total of five different ICG concentration solutions from 128 µM to 3.22 mM. RESULTS: The combined system achieved the performance of processing laser speckle images at about 37-38 fps, and we simultaneously confirmed the fluorescence of ICG and changes in speckle contrast due to intralipid as a light scatterer. In addition, we obtained real-time contrast variation and fluorescent images occurring in rabbit's blood perfusion. CONCLUSIONS: The aim of this study is to provide a real-time diagnostic imaging system that can be used in general clinical applications. LSCI and FI are combined complementary for observing tissue perfusion using a single NIR light source. The combined system could achieve real-time visualization of blood perfusion non-invasively.


Subject(s)
Photochemotherapy , Animals , Rabbits , Photochemotherapy/methods , Photosensitizing Agents , Coloring Agents , Optical Imaging , Indocyanine Green/pharmacology , Lasers
13.
Nat Chem Biol ; 20(2): 221-233, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37884807

ABSTRACT

Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.


Subject(s)
Oxidoreductases , Ubiquinone , Animals , Mice , Drosophila melanogaster , Mice, Transgenic , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteome , Ubiquinone/metabolism , Carrier Proteins
14.
Cancer Res Treat ; 56(1): 48-60, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37402411

ABSTRACT

PURPOSE: This subgroup analysis of the Korean subset of patients in the phase 3 LASER301 trial evaluated the efficacy and safety of lazertinib versus gefitinib as first-line therapy for epidermal growth factor receptor mutated (EGFRm) non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: Patients with locally advanced or metastatic EGFRm NSCLC were randomized 1:1 to lazertinib (240 mg/day) or gefitinib (250 mg/day). The primary endpoint was investigator-assessed progression-free survival (PFS). RESULTS: In total, 172 Korean patients were enrolled (lazertinib, n=87; gefitinib, n=85). Baseline characteristics were balanced between the treatment groups. One-third of patients had brain metastases (BM) at baseline. Median PFS was 20.8 months (95% confidence interval [CI], 16.7 to 26.1) for lazertinib and 9.6 months (95% CI, 8.2 to 12.3) for gefitinib (hazard ratio [HR], 0.41; 95% CI, 0.28 to 0.60). This was supported by PFS analysis based on blinded independent central review. Significant PFS benefit with lazertinib was consistently observed across predefined subgroups, including patients with BM (HR, 0.28; 95% CI, 0.15 to 0.53) and those with L858R mutations (HR, 0.36; 95% CI, 0.20 to 0.63). Lazertinib safety data were consistent with its previously reported safety profile. Common adverse events (AEs) in both groups included rash, pruritus, and diarrhoea. Numerically fewer severe AEs and severe treatment-related AEs occurred with lazertinib than gefitinib. CONCLUSION: Consistent with results for the overall LASER301 population, this analysis showed significant PFS benefit with lazertinib versus gefitinib with comparable safety in Korean patients with untreated EGFRm NSCLC, supporting lazertinib as a new potential treatment option for this patient population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Morpholines , Pyrazoles , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Gefitinib/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Quinazolines , ErbB Receptors/genetics , ErbB Receptors/metabolism , Republic of Korea , Mutation , Protein Kinase Inhibitors/adverse effects
15.
Sci Rep ; 13(1): 21774, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066047

ABSTRACT

This study addresses the limited non-invasive tools for Oral Cavity Squamous Cell Carcinoma (OSCC) survival prediction by identifying Computed Tomography (CT)-based biomarkers to improve prognosis prediction. A retrospective analysis was conducted on data from 149 OSCC patients, including CT radiomics and clinical information. An ensemble approach involving correlation analysis, score screening, and the Sparse-L1 algorithm was used to select functional features, which were then used to build Cox Proportional Hazards models (CPH). Our CPH achieved a 0.70 concordance index in testing. The model identified two CT-based radiomics features, Gradient-Neighboring-Gray-Tone-Difference-Matrix-Strength (GNS) and normalized-Wavelet-LLL-Gray-Level-Dependence-Matrix-Large-Dependence-High-Gray-Level-Emphasis (HLE), as well as stage and alcohol usage, as survival biomarkers. The GNS group with values above 14 showed a hazard ratio of 0.12 and a 3-year survival rate of about 90%. Conversely, the GNS group with values less than or equal to 14 had a 49% survival rate. For normalized HLE, the high-end group (HLE > - 0.415) had a hazard ratio of 2.41, resulting in a 3-year survival rate of 70%, while the low-end group (HLE ≤ - 0.415) had a 36% survival rate. These findings contribute to our knowledge of how radiomics can be used to predict the outcome so that treatment plans can be tailored for patients people with OSCC to improve their survival.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Retrospective Studies , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Tomography, X-Ray Computed/methods , Biomarkers , Prognosis , Mouth Neoplasms/diagnostic imaging
16.
Sci Adv ; 9(50): eadi6096, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100581

ABSTRACT

Giant impact-driven redox processes in the atmosphere and magma ocean played crucial roles in the evolution of Earth. However, because of the absence of rock records from that time, understanding these processes has proven challenging. Here, we present experimental results that simulate the giant impact-driven reactions between iron and volatiles (H2O and CO2) using x-ray free electron laser (XFEL) as fast heat pump and structural probe. Under XFEL pump, iron is oxidized to wüstite (FeO), while volatiles are reduced to H2 and CO. Furthermore, iron oxidation proceeds into formation of hydrides (γ-FeHx) and siderite (FeCO3), implying redox boundary near 300-km depth. Through quantitative analysis on reaction products, we estimate the volatile and FeO budgets in bulk silicate Earth, supporting the Theia hypothesis. Our findings shed light on the fast and short-lived process that led to reduced atmosphere, required for the emergence of prebiotic organic molecules in the early Earth.

17.
Article in English | MEDLINE | ID: mdl-38014872

ABSTRACT

Construction of three-dimensional (3D) frameworks maintaining intrinsic photophysical properties of monomeric building blocks is difficult and challenging due to the existence of various molecular interactions, such as metal-organic and π-π interactions. A 3D hydrogen-bonded organic framework (YSH-1Zn) with permanent porosity was constructed using a porphyrin having six carboxylic acid groups (1Zn). Brunauer-Emmett-Teller surface area measurement indicated that YSH-1Zn has a porous structure with a surface area of 392 m2/g. Single-crystal X-ray diffraction analysis revealed that 1Zn creates a 5-fold interwoven 3D network structure adopting a monoclinic system with a space group of P21/c. Each 1Zn within a single crystal exhibits parallel alignment with a slip-stack angle of 54.6°, in good agreement with the magic angle. Although the center-to-center distance of the nearest zinc atoms in YSH-1Zn is only 5.181 Å, the UV/vis absorption and fluorescence emission of YSH-1Zn are not different from those of 1Zn, indicating the absence of an interaction between excitons. Due to the magic angle alignment of 1Zn, the fluorescence lifetime, decay profiles, and quantum yield remained uniform even in the solid state.

18.
BMC Genomics ; 24(1): 613, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37828501

ABSTRACT

BACKGROUND: The domestic dog, Canis lupus familiaris, is a companion animal for humans as well as an animal model in cancer research due to similar spontaneous occurrence of cancers as humans. Despite the social and biological importance of dogs, the catalogue of genomic variations and transcripts for dogs is relatively incomplete. RESULTS: We developed CanISO, a new database to hold a large collection of transcriptome profiles and genomic variations for domestic dogs. CanISO provides 87,692 novel transcript isoforms and 60,992 known isoforms from whole transcriptome sequencing of canine tumors (N = 157) and their matched normal tissues (N = 64). CanISO also provides genomic variation information for 210,444 unique germline single nucleotide polymorphisms (SNPs) from the whole exome sequencing of 183 dogs, with a query system that searches gene- and transcript-level information as well as covered SNPs. Transcriptome profiles can be compared with corresponding human transcript isoforms at a tissue level, or between sample groups to identify tumor-specific gene expression and alternative splicing patterns. CONCLUSIONS: CanISO is expected to increase understanding of the dog genome and transcriptome, as well as its functional associations with humans, such as shared/distinct mechanisms of cancer. CanISO is publicly available at https://www.kobic.re.kr/caniso/ .


Subject(s)
Neoplasms , Wolves , Dogs , Animals , Humans , Transcriptome , Wolves/genetics , Genome , Genomics , Neoplasms/genetics , Neoplasms/veterinary , Protein Isoforms/genetics
19.
Res Sq ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37674725

ABSTRACT

This study addresses the limited non-invasive tools for Oral Cavity Squamous Cell Carcinoma OSCC survival prediction by identifying Computed Tomography (CT)-based biomarkers for improved prognosis. A retrospective analysis was conducted on data from 149 OSCC patients, including radiomics and clinical. An ensemble approach involving correlation analysis, score screening, and the Sparse-L1 algorithm was used to select functional features, which were then used to build Cox Proportional Hazards models (CPH). Our CPH achieved a 0.70 concordance index in testing. The model identified two CT-based radiomics features, Gradient-Neighboring-Gray-Tone-Difference-Matrix-Strength (GNS) and normalized-Wavelet-LLL-Gray-Level-Dependence-Matrix-Large-Dependence-High-Gray-Level-Emphasis (HLE), as well as smoking and alcohol usage, as survival biomarkers. The GNS group with values above 14 showed a hazard ratio of 0.12 and a 3-year survival rate of about 90%. Conversely, the GNS group with values less than or equal to 14 had a 49% survival rate. For normalized HLE, the high-end group (HLE > -0.415) had a hazard ratio of 2.41, resulting in a 3-year survival rate of 70%, while the low-end group (HLE <= -0.415) had a 36% survival rate. These findings contribute to our knowledge of how radiomics can be used to anticipate the outcome and tailor treatment plans from people with OSCC.

SELECTION OF CITATIONS
SEARCH DETAIL