Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
JAMA Netw Open ; 7(6): e2415383, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38848065

ABSTRACT

Importance: Lung cancer is the deadliest cancer in the US. Early-stage lung cancer detection with lung cancer screening (LCS) through low-dose computed tomography (LDCT) improves outcomes. Objective: To assess the association of a multifaceted clinical decision support intervention with rates of identification and completion of recommended LCS-related services. Design, Setting, and Participants: This nonrandomized controlled trial used an interrupted time series design, including 3 study periods from August 24, 2019, to April 27, 2022: baseline (12 months), period 1 (11 months), and period 2 (9 months). Outcome changes were reported as shifts in the outcome level at the beginning of each period and changes in monthly trend (ie, slope). The study was conducted at primary care and pulmonary clinics at a health care system headquartered in Salt Lake City, Utah, among patients aged 55 to 80 years who had smoked 30 pack-years or more and were current smokers or had quit smoking in the past 15 years. Data were analyzed from September 2023 through February 2024. Interventions: Interventions in period 1 included clinician-facing preventive care reminders, an electronic health record-integrated shared decision-making tool, and narrative LCS guidance provided in the LDCT ordering screen. Interventions in period 2 included the same clinician-facing interventions and patient-facing reminders for LCS discussion and LCS. Main Outcome and Measure: The primary outcome was LCS care gap closure, defined as the identification and completion of recommended care services. LCS care gap closure could be achieved through LDCT completion, other chest CT completion, or LCS shared decision-making. Results: The study included 1865 patients (median [IQR] age, 64 [60-70] years; 759 female [40.7%]). The clinician-facing intervention (period 1) was not associated with changes in level but was associated with an increase in slope of 2.6 percentage points (95% CI, 2.4-2.7 percentage points) per month in care gap closure through any means and 1.6 percentage points (95% CI, 1.4-1.8 percentage points) per month in closure through LDCT. In period 2, introduction of patient-facing reminders was associated with an immediate increase in care gap closure (2.3 percentage points; 95% CI, 1.0-3.6 percentage points) and closure through LDCT (2.4 percentage points; 95% CI, 0.9-3.9 percentage points) but was not associated with an increase in slope. The overall care gap closure rate was 175 of 1104 patients (15.9%) at the end of the baseline period vs 588 of 1255 patients (46.9%) at the end of period 2. Conclusions and Relevance: In this study, a multifaceted intervention was associated with an improvement in LCS care gap closure. Trial Registration: ClinicalTrials.gov Identifier: NCT04498052.


Subject(s)
Early Detection of Cancer , Electronic Health Records , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Early Detection of Cancer/statistics & numerical data , Female , Male , Aged , Middle Aged , Tomography, X-Ray Computed/statistics & numerical data , Aged, 80 and over , Decision Support Systems, Clinical , Utah , Interrupted Time Series Analysis
2.
Nat Neurosci ; 27(5): 913-926, 2024 May.
Article in English | MEDLINE | ID: mdl-38528202

ABSTRACT

Piezo1 regulates multiple aspects of the vascular system by converting mechanical signals generated by fluid flow into biological processes. Here, we find that Piezo1 is necessary for the proper development and function of meningeal lymphatic vessels and that activating Piezo1 through transgenic overexpression or treatment with the chemical agonist Yoda1 is sufficient to increase cerebrospinal fluid (CSF) outflow by improving lymphatic absorption and transport. The abnormal accumulation of CSF, which often leads to hydrocephalus and ventriculomegaly, currently lacks effective treatments. We discovered that meningeal lymphatics in mouse models of Down syndrome were incompletely developed and abnormally formed. Selective overexpression of Piezo1 in lymphatics or systemic administration of Yoda1 in mice with hydrocephalus or Down syndrome resulted in a notable decrease in pathological CSF accumulation, ventricular enlargement and other associated disease symptoms. Together, our study highlights the importance of Piezo1-mediated lymphatic mechanotransduction in maintaining brain fluid drainage and identifies Piezo1 as a promising therapeutic target for treating excessive CSF accumulation and ventricular enlargement.


Subject(s)
Ion Channels , Lymphatic Vessels , Meninges , Mice, Transgenic , Animals , Lymphatic Vessels/metabolism , Ion Channels/metabolism , Ion Channels/genetics , Mice , Meninges/metabolism , Cerebrospinal Fluid/metabolism , Hydrocephalus/genetics , Mechanotransduction, Cellular/physiology , Mice, Inbred C57BL , Female , Male , Pyrazines , Thiadiazoles
3.
RSC Adv ; 14(1): 424-432, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173584

ABSTRACT

We investigate switching of photoluminescence (PL) from PbS quantum dots (QDs) crosslinked with two different types of photochromic diarylethene molecules, 4,4'-(1-cyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (1H) and 4,4'-(1-perfluorocyclopentene-1,2-diyl)bis[5-methyl-2-thiophenecarboxylic acid] (2F). Our results show that the QDs crosslinked with the hydrogenated molecule (1H) exhibit a greater amount of switching in photoluminescence intensity compared to QDs crosslinked with the fluorinated molecule (2F). With a combination of differential pulse voltammetry and density functional theory, we attribute the different amount of PL switching to the different energy levels between 1H and 2F molecules which result in different potential barrier heights across adjacent QDs. Our findings provide a deeper understanding of how the energy levels of bridge molecules influence charge tunneling and PL switching performance in QD systems and offer deeper insights for the future design and development of QD based photo-switches.

4.
Comput Inform Nurs ; 41(12): 1026-1036, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38062548

ABSTRACT

To examine whether psychosocial needs in diabetes care are associated with carbohydrate counting and if carbohydrate counting is associated with satisfaction with diabetes applications' usability, a randomized crossover trial of 92 adults with type 1 or 2 diabetes requiring insulin therapy tested two top-rated diabetes applications, mySugr and OnTrack Diabetes. Survey responses on demographics, psychosocial needs (perceived competence, autonomy, and connectivity), carbohydrate-counting frequency, and application satisfaction were modeled using mixed-effect linear regressions to test associations. Participants ranged between 19 and 74 years old (mean, 54 years) and predominantly had type 2 diabetes (70%). Among the three tested domains of psychosocial needs, only competence-not autonomy or connectivity-was found to be associated with carbohydrate-counting frequency. No association between carbohydrate-counting behavior and application satisfaction was found. In conclusion, perceived competence in diabetes care is an important factor in carbohydrate counting; clinicians may improve adherence to carbohydrate counting with strategies designed to improve perceived competence. Carbohydrate-counting behavior is complex; its impact on patient satisfaction of diabetes application usability is multifactorial and warrants consideration of patient demographics such as sex as well as application features for automated carbohydrate counting.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Mobile Applications , Adult , Humans , Young Adult , Middle Aged , Aged , Diabetes Mellitus, Type 2/therapy , Blood Glucose , Cross-Over Studies
5.
Science ; 379(6636): 1023-1030, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36893254

ABSTRACT

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Subject(s)
Amphiregulin , Astrocytes , Autocrine Communication , Genetic Testing , Microfluidic Analytical Techniques , Microglia , Astrocytes/physiology , Genetic Testing/methods , High-Throughput Screening Assays , Microfluidic Analytical Techniques/methods , Microglia/physiology , Amphiregulin/genetics , Autocrine Communication/genetics , Gene Expression , Humans
6.
Dalton Trans ; 52(12): 3575-3585, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36723189

ABSTRACT

The success story of cisplatin spans over six decades now and yet it continues to be the key player in most chemotherapeutic regimens. Numerous efforts have been made to improve its efficacy, address its shortcomings, and overcome drug resistance. One such strategy is to develop new platinum(IV)-based prodrugs with functionally active ligands to deliver combination therapeutics. This strategy not only enables the drug candidate to access multiple drug targets but also enhances the kinetic inertness of platinum complexes and thereby ensures greater accumulation of active drugs at the target site. We report the synthesis of Platin-C, a platinum(IV)-based cisplatin prodrug tethered to the active component of ancient herbal medicine, curcumin, as one of the axial ligands. This combination complex showed improved chemotherapeutic efficacy in cisplatin resistant A2780/CP70 cell lines compared with the individual components. An amine-terminated biodegradable polymer was suitably functionalized with the triphenylphosphonium (TPP) cation to obtain a mitochondria-directed drug delivery platform. Quantification of Platin-C loading into these NPs using complementary techniques employing curcumin optical properties in high-performance liquid chromatography and platinum-based inductively coupled plasma mass spectrometry evidenced efficacious payload incorporation resulting in functional activities of both the components. Stability studies for a period of one week indicated that the NPs remain stable, enabling substantial loading and controlled release of the prodrug. The targeting nanoparticle (NP) platform was utilized to deliver Platin-C primarily in the mitochondrial network of cancer cells as monitored using confocal microscopy employing the green fluorescence of the curcumin pendant. Our studies showed that amine terminated NPs were relatively less efficient in their ability to target mitochondria despite being positively charged. This re-validated the importance of lipophilic positively charged TPP surface functionalities to successfully target cellular mitochondria. We validated the capabilities of Platin-C and its mitochondria-targeting nanoparticles towards inflicting mitochondria-directed activity in cisplatin-sensitive and cisplatin-resistant cell lines. Furthermore, our studies also demonstrated the effectiveness of Platin-C incorporated targeting NPs in attenuating cellular inflammatory markers by utilizing the curcumin component. This study advances our understanding of the cisplatin prodrug approach to combine chemotherapeutic and inflammatory effects in accessing combinatory pathways.


Subject(s)
Antineoplastic Agents , Curcumin , Nanoparticles , Ovarian Neoplasms , Prodrugs , Humans , Female , Cisplatin/chemistry , Curcumin/pharmacology , Prodrugs/chemistry , Cell Line, Tumor , Ovarian Neoplasms/drug therapy , Platinum/chemistry , Mitochondria , Nanoparticles/chemistry , Antineoplastic Agents/chemistry
7.
Immunol Cell Biol ; 101(3): 249-261, 2023 03.
Article in English | MEDLINE | ID: mdl-36604951

ABSTRACT

Sepsis-elicited immunosuppression elevates the risk of secondary infections. We used a clinically relevant mouse model and serial peripheral blood samples from patients to assess the antimicrobial activities of mucosa-associated invariant T (MAIT) cells in sepsis. Hepatic and splenic MAIT cells from B6-MAITCAST mice displayed increased CD69 expression and a robust interferon-γ (IFNγ) production capacity shortly after sublethal cecal ligation and puncture, but not at a late timepoint. Peripheral blood MAIT cell frequencies were reduced in septic patients at the time of intensive care unit (ICU) admission, and more dramatically so among nonsurvivors, suggesting the predictive usefulness of early MAIT cell enumeration. In addition, at ICU admission, MAIT cells from sepsis survivors launched stronger IFNγ responses to several bacterial species compared with those from patients who subsequently died of sepsis. Of note, while low human leukocyte antigen (HLA)-DR+ monocyte frequencies, widely regarded as a surrogate indicator of sepsis-induced immunosuppression, were gradually corrected, the numerical insufficiency of MAIT cells was not resolved over time, and their CD69 expression continued to decline. MAIT cell responses to bacterial pathogens, a major histocompatibility complex-related protein 1 (MR1) ligand, and interleukin (IL)-12 and IL-18 were also progressively lost during sepsis and did not recover by the time of ICU/hospital discharge. We propose that MAIT cell dysfunctions contribute to post-sepsis immunosuppression.


Subject(s)
Anti-Infective Agents , Mucosal-Associated Invariant T Cells , Sepsis , Humans , Mice , Animals , Prognosis , Interleukin-12/metabolism , HLA-DR Antigens/metabolism , Sepsis/metabolism , Anti-Infective Agents/metabolism
8.
Front Cell Dev Biol ; 10: 931335, 2022.
Article in English | MEDLINE | ID: mdl-36158182

ABSTRACT

Do lymphatic vessels support cancer cells? Or are they vessels that help suppress cancer development? It is known that the lymphatic system is a vehicle for tumor metastasis and that the lymphangiogenic regulator VEGF-C supports the tumor. One such role of VEGF-C is the suppression of the immune response to cancer. The lymphatic system has also been correlated with an increase in interstitial fluid pressure of the tumor microenvironment. On the other hand, lymphatic vessels facilitate immune surveillance to mount an immune response against tumors with the support of VEGF-C. Furthermore, the activation of lymphatic fluid drainage may prove to filter and decrease tumor interstitial fluid pressure. In this review, we provide an overview of the dynamic between lymphatics, cancer, and tumor fluid pressure to suggest that lymphatic vessels may be used as an antitumor therapy due to their capabilities of immune surveillance and fluid pressure drainage. The application of this potential may help to prevent tumor proliferation or increase the efficacy of drugs that target cancer.

9.
Circ Res ; 131(2): e2-e21, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35701867

ABSTRACT

BACKGROUND: Mutations in PIEZO1 (Piezo type mechanosensitive ion channel component 1) cause human lymphatic malformations. We have previously uncovered an ORAI1 (ORAI calcium release-activated calcium modulator 1)-mediated mechanotransduction pathway that triggers lymphatic sprouting through Notch downregulation in response to fluid flow. However, the identity of its upstream mechanosensor remains unknown. This study aimed to identify and characterize the molecular sensor that translates the flow-mediated external signal to the Orai1-regulated lymphatic expansion. METHODS: Various mutant mouse models, cellular, biochemical, and molecular biology tools, and a mouse tail lymphedema model were employed to elucidate the role of Piezo1 in flow-induced lymphatic growth and regeneration. RESULTS: Piezo1 was found to be abundantly expressed in lymphatic endothelial cells. Piezo1 knockdown in cultured lymphatic endothelial cells inhibited the laminar flow-induced calcium influx and abrogated the flow-mediated regulation of the Orai1 downstream genes, such as KLF2 (Krüppel-like factor 2), DTX1 (Deltex E3 ubiquitin ligase 1), DTX3L (Deltex E3 ubiquitin ligase 3L,) and NOTCH1 (Notch receptor 1), which are involved in lymphatic sprouting. Conversely, stimulation of Piezo1 activated the Orai1-regulated mechanotransduction in the absence of fluid flow. Piezo1-mediated mechanotransduction was significantly blocked by Orai1 inhibition, establishing the epistatic relationship between Piezo1 and Orai1. Lymphatic-specific conditional Piezo1 knockout largely phenocopied sprouting defects shown in Orai1- or Klf2- knockout lymphatics during embryo development. Postnatal deletion of Piezo1 induced lymphatic regression in adults. Ectopic Dtx3L expression rescued the lymphatic defects caused by Piezo1 knockout, affirming that the Piezo1 promotes lymphatic sprouting through Notch downregulation. Consistently, transgenic Piezo1 expression or pharmacological Piezo1 activation enhanced lymphatic sprouting. Finally, we assessed a potential therapeutic value of Piezo1 activation in lymphatic regeneration and found that a Piezo1 agonist, Yoda1, effectively suppressed postsurgical lymphedema development. CONCLUSIONS: Piezo1 is an upstream mechanosensor for the lymphatic mechanotransduction pathway and regulates lymphatic growth in response to external physical stimuli. Piezo1 activation presents a novel therapeutic opportunity for preventing postsurgical lymphedema. The Piezo1-regulated lymphangiogenesis mechanism offers a molecular basis for Piezo1-associated lymphatic malformation in humans.


Subject(s)
Lymphatic Vessels , Lymphedema , Animals , Endothelial Cells/metabolism , Humans , Ion Channels/genetics , Ion Channels/metabolism , Lymphatic Vessels/metabolism , Lymphedema/metabolism , Mechanotransduction, Cellular/physiology , Mice , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
ACS Omega ; 7(24): 20968-20974, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35755380

ABSTRACT

Ytterbium-doped cesium lead halides are quantum cutting materials with exceptionally high photoluminescence quantum yields, making them promising materials as scintillators. In this work, we report ytterbium-doped cesium lead chloride (Yb3+:CsPbCl3) with an X-ray scintillation light yield of 102,000 photons/MeV at room temperature, which is brighter than the current state-of-the-art commercial scintillators. The high light yield was achieved based on a novel method of synthesizing Yb3+:CsPbCl3 powders using water and low-temperature processing. The combination of high light yield and the simple and inexpensive manufacturing method reported in this work demonstrates the great potential of Yb3+:CsPbCl3 for scintillation applications.

11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35165181

ABSTRACT

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Subject(s)
Interferon-gamma/immunology , Staphylococcal Infections/immunology , Superantigens/immunology , Animals , Bacteremia , Enterotoxins/immunology , Exotoxins/immunology , Histocompatibility Antigens Class II/immunology , Humans , Interferon-gamma/metabolism , Lymphocyte Activation/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/immunology , Staphylococcus aureus/pathogenicity , T-Lymphocytes/immunology , Virulence Factors/immunology
12.
Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35046035

ABSTRACT

The long charge carrier lifetime of the hybrid organic-inorganic perovskites (HOIPs) is the key for their remarkable performance as a solar cell material. The microscopic mechanism for the long lifetime is still in debate. Here, by using a muon spin relaxation technique that probes the fluctuation of local magnetic fields, we show that the muon depolarization rate (Δ) of a prototype HOIP methylammonium lead iodide (MAPbI3) shows a sharp decrease with increasing temperature in two steps above 120 K and 190 K across the structural transition from orthorhombic to tetragonal structure at 162 K. Our analysis shows that the reduction of Δ is quantitatively in agreement with the expected behavior due to the rapid development of methyl ammonium (MA) jumping rotation around the C 3 and C 4 symmetry axes. Our results provide direct evidence for the intimate relation between the rotation of the electric dipoles of MA molecules and the charge carrier lifetime in HOIPs.

13.
J Digit Imaging ; 34(4): 1049-1058, 2021 08.
Article in English | MEDLINE | ID: mdl-34131794

ABSTRACT

Automated quantitative and probabilistic medical image analysis has the potential to improve the accuracy and efficiency of the radiology workflow. We sought to determine whether AI systems for brain MRI diagnosis could be used as a clinical decision support tool to augment radiologist performance. We utilized previously developed AI systems that combine convolutional neural networks and expert-derived Bayesian networks to distinguish among 50 diagnostic entities on multimodal brain MRIs. We tested whether these systems could augment radiologist performance through an interactive clinical decision support tool known as Adaptive Radiology Interpretation and Education System (ARIES) in 194 test cases. Four radiology residents and three academic neuroradiologists viewed half of the cases unassisted and half with the results of the AI system displayed on ARIES. Diagnostic accuracy of radiologists for top diagnosis (TDx) and top three differential diagnosis (T3DDx) was compared with and without ARIES. Radiology resident performance was significantly better with ARIES for both TDx (55% vs 30%; P < .001) and T3DDx (79% vs 52%; P = 0.002), with the largest improvement for rare diseases (39% increase for T3DDx; P < 0.001). There was no significant difference between attending performance with and without ARIES for TDx (72% vs 69%; P = 0.48) or T3DDx (86% vs 89%; P = 0.39). These findings suggest that a hybrid deep learning and Bayesian inference clinical decision support system has the potential to augment diagnostic accuracy of non-specialists to approach the level of subspecialists for a large array of diseases on brain MRI.


Subject(s)
Deep Learning , Radiology , Bayes Theorem , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging
14.
Cell Rep ; 35(2): 108979, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852855

ABSTRACT

The deleterious effects of psychological stress on mainstream T lymphocytes are well documented. However, how stress impacts innate-like T cells is unclear. We report that long-term stress surprisingly abrogates both T helper 1 (TH1)- and TH2-type responses orchestrated by invariant natural killer T (iNKT) cells. This is not due to iNKT cell death because these cells are unusually refractory to stress-inflicted apoptosis. Activated iNKT cells in stressed mice exhibit a "split" inflammatory signature and trigger sudden serum interleukin-10 (IL-10), IL-23, and IL-27 spikes. iNKT cell dysregulation is mediated by cell-autonomous glucocorticoid receptor signaling and corrected upon habituation to predictable stressors. Importantly, under stress, iNKT cells fail to potentiate cytotoxicity against lymphoma or to reduce the burden of metastatic melanoma. Finally, stress physically spares mouse mucosa-associated invariant T (MAIT) cells but hinders their TH1-/TH2-type responses. The above findings are corroborated in human peripheral blood and hepatic iNKT/MAIT cell cultures. Our work uncovers a mechanism of stress-induced immunosuppression.


Subject(s)
Liver Neoplasms/immunology , Lymphoma/immunology , Mucosal-Associated Invariant T Cells/immunology , Natural Killer T-Cells/immunology , Stress, Psychological/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Line, Tumor , Chronic Disease , Corticosterone/pharmacology , Cytotoxicity, Immunologic , Female , Gene Expression Regulation, Neoplastic , Humans , Immobilization , Immunity, Innate , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-23/genetics , Interleukin-23/immunology , Interleukins/genetics , Interleukins/immunology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Lymphoma/genetics , Lymphoma/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Mucosal-Associated Invariant T Cells/drug effects , Mucosal-Associated Invariant T Cells/pathology , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/pathology , Neoplasm Metastasis , Oxidopamine/pharmacology , Signal Transduction , Stress, Psychological/genetics , Stress, Psychological/pathology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/pathology , Th1-Th2 Balance
15.
J Immunol ; 206(2): 386-397, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33310870

ABSTRACT

Sepsis results from a heavy-handed response to infection that may culminate in organ failure and death. Many patients who survive acute sepsis become immunosuppressed and succumb to opportunistic infections. Therefore, to be successful, sepsis immunotherapies must target both the initial and the protracted phase of the syndrome to relieve early immunopathology and late immunosuppression, respectively. Invariant NKT (iNKT) cells are attractive therapeutic targets in sepsis. However, repeated treatments with α-galactosylceramide, the prototypic glycolipid ligand of iNKT cells, result in anergy. We designed a double-hit treatment that allows iNKT cells to escape anergy and exert beneficial effects in biphasic sepsis. We tested the efficacy of this approach in the sublethal cecal ligation and puncture mouse model, which mirrors polymicrobial sepsis with progression to an immunosuppressed state. Septic mice were treated with [(C2S, 3S, 4R)-1-O-(α-d-galactopyranosyl)-N-tetracosanoyl-2-amino-1,3,4-nonanetriol] (OCH), a TH2-polarizing iNKT cell agonist, before they received α-galactosylceramide. This regimen reduced the morbidity and mortality of cecal ligation and puncture, induced a transient but robust IFN-γ burst within a proinflammatory cytokine/chemokine landscape, transactivated NK cells, increased MHC class II expression on macrophages, and restored delayed-type hypersensitivity to a model hapten, consistent with recovery of immunocompetence in protracted sepsis. Structurally distinct TH2-polarizing agonists varied in their ability to replace OCH as the initial hit, with their lipid chain length being a determinant of efficacy. The proposed approach effectively exploits iNKT cells' versatility in biphasic sepsis and may have translational potentials in the development of new therapies.


Subject(s)
Immunotherapy/methods , Natural Killer T-Cells/immunology , Sepsis/immunology , Th2 Cells/immunology , Animals , Cecum/surgery , Cells, Cultured , Clonal Anergy , Disease Models, Animal , Galactosylceramides/immunology , Humans , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Natural Killer T-Cells/transplantation , Sepsis/therapy
16.
Nano Lett ; 20(5): 3331-3337, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32202803

ABSTRACT

We report on the thermal conductivities of two-dimensional metal halide perovskite films measured by time domain thermoreflectance. Depending on the molecular substructure of ammonium cations and owing to the weaker interactions in the layered structures, the thermal conductivities of our two-dimensional hybrid perovskites range from 0.10 to 0.19 W m-1 K-1, which is drastically lower than that of their three-dimensional counterparts. We use molecular dynamics simulations to show that the organic component induces a reduction of the stiffness and sound velocities along with giving rise to vibrational modes in the 5-15 THz range that are absent in the three-dimensional counterparts. By systematically studying eight different two-dimensional hybrid perovskites, we show that the thermal conductivities of our hybrid films do not depend on the thicknesses of the organic layers and instead are highly dependent on the relative orientation of the organic chains sandwiched between the inorganic constituents.

17.
J Chem Phys ; 152(1): 014703, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31914767

ABSTRACT

The extended charge carrier lifetime in metal halide perovskites is responsible for their excellent optoelectronic properties. Recent studies indicate that the superb device performance in these materials is intimately related to the organic cation dynamics. Here, we focus on the investigation of the two-dimensional hybrid perovskite, (C8H17NH3)2PbI4 (henceforth, OA+ = C8H17NH3 +). Using elastic and quasielastic neutron scattering techniques and group theoretical analysis, we studied the structural phase transitions and rotational modes of the C8H17NH3 + cation in (OA)2PbI4. Our results show that, in the high-temperature orthorhombic (T > 310 K) phase, the OA+ cation exhibits a combination of a twofold rotation of the NH3-CH2 head group about the crystal c-axis with a characteristic relaxation time of ∼6.2 ps, threefold rotations (C3) of NH3 and CH3 terminal groups, and slow librations of the other atoms. Contrastingly, only the C3 rotation is present in the intermediate-temperature orthorhombic (238 K < T < 310 K) and low-temperature monoclinic (T < 238 K) phases.

18.
J Immunol ; 203(7): 1808-1819, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31462506

ABSTRACT

Invariant NKT (iNKT) cells are innate-like T lymphocytes that recognize and respond to glycolipid Ags such as α-galactosylceramide (α-GalCer). This unique property has been exploited in clinical trials for multiple malignancies. While investigating mouse iNKT cell responses to α-GalCer in vivo, we found a dramatically enlarged tissue-resident population surprisingly coexpressing select dendritic cell, NK cell, and B cell markers. Further phenotypic and functional analyses revealed the identity of this B220+CD11c+MHC class II+NK1.1+ population as precursors to mature NK (pre-mNK) cells, which also expressed high levels of proliferation and tissue retention markers but diminished sphingosine-1-phosphate receptor 1, a receptor that facilitates tissue trafficking. Accordingly, FTY720, a sphingosine-1-phosphate receptor 1 antagonist, failed to prevent pre-mNK cells' intrahepatic accumulation. We found iNKT cell-driven expansion of pre-mNK cells to be dependent on IL-12 and IL-18. Although α-GalCer-transactivated pre-mNK cells lost their capacity to process a model tumor Ag, they selectively expressed granzyme A and directly lysed YAC-1 thymoma cells through granule exocytosis. They also contributed to ß2 microglobulin-deficient target cell destruction in vivo. Therefore, α-GalCer treatment skewed pre-mNK cell responses away from an APC-like phenotype and toward killer cell-like functions. Finally, the ability of α-GalCer to reduce the pulmonary metastatic burden of B16-F10 mouse melanoma was partially reversed by in vivo depletion of pre-mNK cells. To our knowledge, our findings shed new light on iNKT cells' mechanism of action and glycolipid-based immunotherapies. Therefore, we introduce pre-mNK cells as a novel downstream effector cell type whose anticancer properties may have been overlooked in previous investigations.


Subject(s)
Antigens, Neoplasm/immunology , Galactosylceramides/immunology , Killer Cells, Natural/immunology , Melanoma, Experimental/immunology , Natural Killer T-Cells/immunology , Thymoma/immunology , Animals , Antigens, Neoplasm/genetics , Cell Line, Tumor , Fingolimod Hydrochloride/pharmacology , Galactosylceramides/genetics , Immunotherapy , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Killer Cells, Natural/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Knockout , Natural Killer T-Cells/pathology , Neoplasm Metastasis , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/immunology , Thymoma/genetics , Thymoma/pathology , Thymoma/therapy
19.
J Vis Exp ; (147)2019 05 06.
Article in English | MEDLINE | ID: mdl-31107454

ABSTRACT

Carboxyfluorescein succinimidyl ester (CFSE)-based in vivo cytotoxicity assays enable sensitive and accurate quantitation of CD8+ cytolytic T lymphocyte (CTL) responses elicited against tumor- and pathogen-derived peptides. They offer several advantages over traditional killing assays. First, they permit the monitoring of CTL-mediated cytotoxicity within architecturally intact secondary lymphoid organs, typically in the spleen. Second, they allow for mechanistic studies during the priming, effector and recall phases of CTL responses. Third, they provide useful platforms for vaccine/drug efficacy testing in a truly in vivo setting. Here, we provide an optimized protocol for the examination of concomitant CTL responses against more than one peptide epitope of a model tumor antigen (Ag), namely, simian virus 40 (SV40)-encoded large T Ag (T Ag). Like most other clinically relevant tumor proteins, T Ag harbors many potentially immunogenic peptides. However, only four such peptides induce detectable CTL responses in C57BL/6 mice. These responses are consistently arranged in a hierarchical order based on their magnitude, which forms the basis for TCD8 "immunodominance" in this powerful system. Accordingly, the bulk of the T Ag-specific TCD8 response is focused against a single immunodominant epitope while the other three epitopes are recognized and responded to only weakly. Immunodominance compromises the breadth of antitumor TCD8 responses and is, as such, considered by many as an impediment to successful vaccination against cancer. Therefore, it is important to understand the cellular and molecular factors and mechanisms that dictate or shape TCD8 immunodominance. The protocol we describe here is tailored to the investigation of this phenomenon in the T Ag immunization model, but can be readily modified and extended to similar studies in other tumor models. We provide examples of how the impact of experimental immunotherapeutic interventions can be measured using in vivo cytotoxicity assays.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Immunoassay/methods , Immunodominant Epitopes/immunology , Neoplasms/immunology , Animals , Antigens, Viral, Tumor/immunology , Epitopes, T-Lymphocyte/immunology , Mice, Inbred C57BL , Peptides/immunology , T-Lymphocytes, Cytotoxic/immunology
20.
Brain Behav Immun ; 80: 793-804, 2019 08.
Article in English | MEDLINE | ID: mdl-31108170

ABSTRACT

Stress is known to impede certain host defense mechanisms, including those governed by conventional T lymphocytes. However, whether innate-like T lymphocytes, such as invariant natural killer T (iNKT) and mucosa-associated invariant T (MAIT) cells, are impacted by stress is unclear. Herein, we report that prolonged psychological stress caused by physical confinement results in robust upregulation of T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), an immune checkpoint receptor that controls antitumor and antiviral immune responses. Elevated TIGIT expression was found not only on NK and conventional T cells, but also on iNKT and MAIT cells. Stress-provoked TIGIT upregulation was reversed through treatment with the glucocorticoid receptor (GR) antagonist RU486, but not with 6-hydroxydopamine that induces chemical sympathectomy. A Cre/Lox gene targeting model in which GR was ablated in cells expressing Lck under its proximal promoter revealed that TIGIT upregulation in stressed animals stems from direct GR signaling in T and iNKT cells. In fact, long-term oral administration of exogenous corticosterone (CS) to wild-type C57BL/6 (B6) mice was sufficient to increase TIGIT expression levels on T and iNKT cells. In vitro treatment with CS also potently and selectively upregulated TIGIT, but not CTLA-4 or LAG-3, on mouse iNKT and MAIT hybridomas. These results were recapitulated using primary hepatic iNKT and MAIT cells from wild-type B6 and B6.MAITCAST mice, respectively. Subjecting B6.MAITCAST mice to physical restraint also raised the frequency of TIGIT+ cells among hepatic MAIT cells in a GR-dependent manner. Finally, we found that TIGIT is similarly upregulated in a chronic variable stress model in which animals are exposed to unpredictable heterotypic stressors without developing habituation. Taken together, our findings link, for the first time to our knowledge, GR signaling to TIGIT expression. We propose that glucocorticoid hormones dampen immune responses, in part, by enhancing TIGIT expression across multiple critical subsets of effector lymphocytes, including innate-like T cells. Therefore, TIGIT may constitute an attractive target in immune-enhancing interventions for sustained physiological stress.


Subject(s)
Mucosal-Associated Invariant T Cells/metabolism , Natural Killer T-Cells/metabolism , Receptors, Immunologic/metabolism , Stress, Psychological/metabolism , Animals , Female , Lymphocyte Activation , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Mucosal-Associated Invariant T Cells/immunology , Natural Killer T-Cells/immunology , Receptors, Glucocorticoid/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Signal Transduction , Stress, Psychological/immunology , Transcriptional Activation , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...