Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Labelled Comp Radiopharm ; 59(10): 416-23, 2016 08.
Article in English | MEDLINE | ID: mdl-27435268

ABSTRACT

The significance of imaging hypoxia with the positron emission tomography ligand [(18) F]FMISO has been demonstrated in a variety of cancers. However, the slow kinetics of [(18) F]FMISO require a 2-h delay between tracer administration and patient scanning. Labeled chloroethyl sulfoxides have shown faster kinetics and higher contrast than [(18) F]FMISO in a rat model of ischemic stroke. However, these nitrogen mustard analogues are unsuitable for routine production and use in humans. Here, we report on the synthesis and in vitro and in vivo evaluation of a novel sulfoxide, which contains an ester moiety for hydrolysis and subsequent trapping in hypoxic cells. Non-decay corrected yields of radioactivity were 1.18 ± 0.24% (n = 27, 2.5 ± 0.5% decay corrected radiochemical yield) based on K[(18) F]F. The radiotracer did not show any defluorination and did not undergo metabolism in an in vitro assay using S9 liver fractions. Imaging studies using an SK-RC-52 tumor model in BALB/c nude mice have revealed that [(18) F]1 is retained in hypoxic tumors and has similar hypoxia selectivity to [(18) F]FMISO. Because of a three times faster clearance rate than [(18) F]FMISO from normoxic tissue, [(18) F]1 has emerged as a promising new radiotracer for hypoxia imaging.


Subject(s)
Fluorine Radioisotopes , Glycine/analogs & derivatives , Sulfoxides , Tumor Hypoxia , Animals , Cell Line, Tumor , Drug Stability , Glycine/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Isotope Labeling , Mice , Molecular Imaging , Radiochemistry , Sulfoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...