Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nature ; 586(7830): 560-566, 2020 10.
Article in English | MEDLINE | ID: mdl-32854108

ABSTRACT

Coronaviruses are prone to transmission to new host species, as recently demonstrated by the spread to humans of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic1. Small animal models that recapitulate SARS-CoV-2 disease are needed urgently for rapid evaluation of medical countermeasures2,3. SARS-CoV-2 cannot infect wild-type laboratory mice owing to inefficient interactions between the viral spike protein and the mouse orthologue of the human receptor, angiotensin-converting enzyme 2 (ACE2)4. Here we used reverse genetics5 to remodel the interaction between SARS-CoV-2 spike protein and mouse ACE2 and designed mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA), a recombinant virus that can use mouse ACE2 for entry into cells. SARS-CoV-2 MA was able to replicate in the upper and lower airways of both young adult and aged BALB/c mice. SARS-CoV-2 MA caused more severe disease in aged mice, and exhibited more clinically relevant phenotypes than those seen in Hfh4-ACE2 transgenic mice, which express human ACE2 under the control of the Hfh4 (also known as Foxj1) promoter. We demonstrate the utility of this model using vaccine-challenge studies in immune-competent mice with native expression of mouse ACE2. Finally, we show that the clinical candidate interferon-λ1a (IFN-λ1a) potently inhibits SARS-CoV-2 replication in primary human airway epithelial cells in vitro-both prophylactic and therapeutic administration of IFN-λ1a diminished SARS-CoV-2 replication in mice. In summary, the mouse-adapted SARS-CoV-2 MA model demonstrates age-related disease pathogenesis and supports the clinical use of pegylated IFN-λ1a as a treatment for human COVID-196.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Disease Models, Animal , Interferons/pharmacology , Interferons/therapeutic use , Interleukins/pharmacology , Interleukins/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Aging/immunology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Female , Forkhead Transcription Factors/genetics , Humans , Interferon-alpha/administration & dosage , Interferon-alpha/pharmacology , Interferon-alpha/therapeutic use , Interferons/administration & dosage , Interleukins/administration & dosage , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Models, Molecular , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2
3.
bioRxiv ; 2020 May 07.
Article in English | MEDLINE | ID: mdl-32511406

ABSTRACT

Coronaviruses are prone to emergence into new host species most recently evidenced by SARS-CoV-2, the causative agent of the COVID-19 pandemic. Small animal models that recapitulate SARS-CoV-2 disease are desperately needed to rapidly evaluate medical countermeasures (MCMs). SARS-CoV-2 cannot infect wildtype laboratory mice due to inefficient interactions between the viral spike (S) protein and the murine ortholog of the human receptor, ACE2. We used reverse genetics to remodel the S and mACE2 binding interface resulting in a recombinant virus (SARS-CoV-2 MA) that could utilize mACE2 for entry. SARS-CoV-2 MA replicated in both the upper and lower airways of both young adult and aged BALB/c mice. Importantly, disease was more severe in aged mice, and showed more clinically relevant phenotypes than those seen in hACE2 transgenic mice. We then demonstrated the utility of this model through vaccine challenge studies in immune competent mice with native expression of mACE2. Lastly, we show that clinical candidate interferon (IFN) lambda-1a can potently inhibit SARS-CoV-2 replication in primary human airway epithelial cells in vitro , and both prophylactic and therapeutic administration diminished replication in mice. Our mouse-adapted SARS-CoV-2 model demonstrates age-related disease pathogenesis and supports the clinical use of IFN lambda-1a treatment in human COVID-19 infections.

4.
Bioorg Med Chem Lett ; 20(14): 4060-4, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20541404

ABSTRACT

A pyridazin-4-one fragment 4 (hCatS IC(50)=170 microM) discovered through Tethering was modeled into cathepsin S and predicted to overlap in S2 with the tetrahydropyridinepyrazole core of a previously disclosed series of CatS inhibitors. This fragment served as a template to design pyridazin-3-one 12 (hCatS IC(50)=430 nM), which also incorporates P3 and P5 binding elements. A crystal structure of 12 bound to Cys25Ser CatS led to the synthesis of the potent diazinone isomers 22 (hCatS IC(50)=60 nM) and 27 (hCatS IC(50)=40 nM).


Subject(s)
Cathepsins/antagonists & inhibitors , Protease Inhibitors/chemistry , Pyrazoles/chemistry , Crystallography, X-Ray , Models, Molecular , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 18(21): 5763-5, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18842409

ABSTRACT

The identification of a selective CDK2, 7, 9 inhibitor 4 with improved permeability is described. Compound 4 exhibits comparable CDK selectivity profile to SNS-032, but shows improved permeability and higher bioavailability in mice.


Subject(s)
Oxazoles/chemistry , Oxazoles/pharmacokinetics , Thiazoles/chemistry , Thiazoles/pharmacokinetics , Animals , Biological Availability , Mice , Permeability
7.
Bioorg Med Chem Lett ; 18(20): 5648-52, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18793847

ABSTRACT

A series of 2-amino-pyrazolopyridines was designed and synthesized as Polo-like kinase (Plk) inhibitors based on a low micromolar hit. The SAR was developed to provide compounds exhibiting low nanomolar inhibitory activity of Plk1; the phenotype of treated cells is consistent with Plk1 inhibition. A co-crystal structure of one of these compounds with zPlk1 confirms an ATP-competitive binding mode.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Chemistry, Pharmaceutical/methods , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyridines/chemical synthesis , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Cell Cycle , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Phenotype , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Structure-Activity Relationship , Polo-Like Kinase 1
8.
Science ; 310(5750): 1022-5, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16284179

ABSTRACT

We have identified a small-molecule inhibitor of tumor necrosis factor alpha (TNF-alpha) that promotes subunit disassembly of this trimeric cytokine family member. The compound inhibits TNF-alpha activity in biochemical and cell-based assays with median inhibitory concentrations of 22 and 4.6 micromolar, respectively. Formation of an intermediate complex between the compound and the intact trimer results in a 600-fold accelerated subunit dissociation rate that leads to trimer dissociation. A structure solved by x-ray crystallography reveals that a single compound molecule displaces a subunit of the trimer to form a complex with a dimer of TNF-alpha subunits.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/chemistry , Biotinylation , Chemical Phenomena , Chemistry, Physical , Crystallography, X-Ray , Dimerization , Fluorescence , Hydrogen/chemistry , Hydrophobic and Hydrophilic Interactions , Indoles/chemical synthesis , Kinetics , Mass Spectrometry , Models, Chemical , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Conformation , Protein Subunits/chemistry , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Nat Biotechnol ; 21(3): 308-14, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12563278

ABSTRACT

Cysteine aspartyl protease-3 (caspase-3) is a mediator of apoptosis and a therapeutic target for a wide range of diseases. Using a dynamic combinatorial technology, 'extended tethering', we identified unique nonpeptidic inhibitors for this enzyme. Extended tethering allowed the identification of ligands that bind to discrete regions of caspase-3 and also helped direct the assembly of these ligands into small-molecule inhibitors. We first designed a small-molecule 'extender' that irreversibly alkylates the cysteine residue of caspase-3 and also contains a thiol group. The modified protein was then screened against a library of disulfide-containing small-molecule fragments. Mass-spectrometry was used to identify ligands that bind noncovalently to the protein and that also form a disulfide linkage with the extender. Linking the selected fragments with binding elements from the extenders generates reversible, tight-binding molecules that are druglike and distinct from known inhibitors. One molecule derived from this approach inhibited apoptosis in cells.


Subject(s)
Caspase Inhibitors , Caspases/chemistry , Combinatorial Chemistry Techniques/methods , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Jurkat Cells/drug effects , Apoptosis/drug effects , Caspase 3 , Caspases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/classification , Humans , Jurkat Cells/metabolism , Mass Spectrometry/methods , Models, Molecular , Peptide Library
11.
J Med Chem ; 45(23): 5005-22, 2002 Nov 07.
Article in English | MEDLINE | ID: mdl-12408711

ABSTRACT

The design, synthesis, and in vitro activities of a series of potent and selective small-molecule inhibitors of caspase-3 are described. From extended tethering, a salicylic acid fragment was identified as having binding affinity for the S(4) pocket of caspase-3. X-ray crystallography and molecular modeling of the initial tethering hit resulted in the synthesis of 4, which reversibly inhibited caspase-3 with a K(i) = 40 nM. Further optimization led to the identification of a series of potent and selective inhibitors with K(i) values in the 20-50 nM range. One of the most potent compounds in this series, 66b, inhibited caspase-3 with a K(i) = 20 nM and selectivity of 8-500-fold for caspase-3 vs a panel of seven caspases (1, 2, and 4-8). A high-resolution X-ray cocrystal structure of 4 and 66b supports the predicted binding modes of our compounds with caspase-3.


Subject(s)
Aspartic Acid/chemical synthesis , Caspase Inhibitors , Enzyme Inhibitors/chemical synthesis , Salicylates/chemical synthesis , Sulfonamides/chemical synthesis , Aspartic Acid/analogs & derivatives , Aspartic Acid/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Binding Sites , Caspase 3 , Caspases/chemistry , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Fluorenes/chemical synthesis , Fluorenes/chemistry , Humans , Protein Binding , Salicylates/chemistry , Sulfonamides/chemistry , Thiophenes/chemical synthesis , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...