Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874746

ABSTRACT

Puga geothermal geyser and surrounding area, located in the Himalayan Geothermal Belt of the Trans-Himalayan Plateau in Ladakh, India, are very geographically isolated and considered pristine and free of anthropogenic activities. In this study, we have conducted the first metagenomic investigation of the microbes in and around the geyser. The whole genome sequencing analysis showed the presence of a total of 44.8%, 39.7% and 41.4% bacterial phyla in the PugW, PugS, and PugSo samples respectively, 8.6% of archaeal phyla (in all the samples), unclassified (derived from other sequences, PugW: 27.6%, PugS: 27.6%, and PugSo: 15.5%) and unclassified (derived from bacteria, PugW: 12%, PugS: 13.8%, and PugSo: 13.8%). The majority of archaeal sequences were linked to Euryarchaeota (2.84%) while the majority of the bacterial communities that predominated in most geothermal locations were linked to Pseudomonadota (67.14%) and Bacteroidota (12.52%). The abundant bacterial strains at the species level included Dechloromonas aromatica, Acinetobacter baumannii, and Arcobacter butzleri, in all the samples while the most abundant archaeal species were Methanosaeta thermophile, Methanoregula boonei, and Methanosarcina berkeri. Further, this geothermal geyser metagenome has a large number of unique sequences linked to unidentified and unclassified lineages, suggesting a potential source for novel species of microbes and their products. The present study which only examined one of the many geothermal geysers and springs in the Puga geothermal area, should be regarded as a preliminary investigation of the microbiota that live in the geothermal springs on these remote areas. These findings suggest that further investigations should be undertaken to characterize the ecosystems of the Puga geothermal area, which serve as a repository for unidentified microbial lineages.

2.
Braz J Microbiol ; 55(2): 1465-1476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662153

ABSTRACT

Due to their distinctive physicochemical characteristics, hot springs are extremely important. The whole genome metagenomic sequencing technology can be utilized to analyze the diverse microbial community that thrives in this habitat due to the particular selection pressure that prevails there. The current investigation emphasizes on culture-independent metagenomic study of the Panamik hot spring and its nearby areas from Ladakh, India. Based on different diversity indices, sequence analysis of the soil reservoir showed higher species richness and diversity in comparison to water and sediment samples. The mineral content and various physicochemical pameters like temperature, pH had an impact on the composition of the microbial community of the geothermal springs. The phyla Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacter, Firmicutes, and Verrucomicrobia in bacterial domain dominate the thermos-alkaline spring at Panamik in different concentrations. Economically significant microbes from the genera Actinobacter, Thermosynechoccus, Candidatus Solibacter, Chthoniobacter, Synechoccus, Pseudomonas and Sphingomonas, were prevalent in hot spring. In the archaeal domain, the most dominant phylum and genera were Euryarchaeota and Thermococcus in all the samples. Further, the most abundant species were Methanosarcina barkeri, Nitrospumilus maritimus and Methanosarcina acetivorans. The present study which only examined one of the several thermal springs present in the Himalayan geothermal area, should be regarded as a preliminary investigation of the microbiota that live in the hot springs on these remote areas. These findings suggest that further investigations should be undertaken to characterize the ecosystems of the Panamik hot spring, which serve as a repository for unidentified microbial lineages.


Subject(s)
Archaea , Bacteria , High-Throughput Nucleotide Sequencing , Hot Springs , Metagenomics , Microbiota , Hot Springs/microbiology , India , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Archaea/genetics , Archaea/classification , Archaea/isolation & purification , Phylogeny , Biodiversity
3.
Braz J Microbiol ; 55(2): 1545-1555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421596

ABSTRACT

In light of their unique and challenging environment, the high-altitude Chumathang geothermal springs in Ladakh, India, are undeniably intriguing for microbiological study. The purpose of this study was to employ a culture-independent sequencing approach to give a comprehensive characterization of the unknown bacterial and archaeal community structure, composition and networks in water and soil from the Chumathang geothermal spring. A total of 50%, and 42.86% bacterial phyla were found in the water, and soil samples respectively and this analysis also showed a total of 9.62% and 7.94% of archaeal phyla in both the samples, respectively. Further, the presence of unclassified (derived from other sequences, water: 17.31%, and soil: 19.05%) and unclassified (derived from bacteria, water: 13.46%, and soil: 12.70%) were also observed in the current metagenomics investigation. Firmicutes and Proteobacteria were the most abundant bacterial phyla in water, whereas Proteobacteria and Bacteroidetes were the most abundant bacterial phyla in geothermal soil. Crenarchaeota and Euryarchaeota dominated archeal communities in soil and water, respectively. This metagenomic study gave a detailed insight into the microbial diversity found in Chumathang geothermal spring and surrounding area, located in Ladakh, India. Surprisingly, this finding indicated the existence of geographically distinct microbial communities that were suited to various geothermal water habitats along the Himalayan Geothermal Belt. Future studies must take into account the metabolic pathways of these microbial communities that exist in these extreme environments. This will allow us to obtain a better knowledge of the microbial metabolisms that are common at these geothermal locations, which have a lot of potential for biotechnological applications. They will also enable us to establish links between the microbial community composition and the physicochemical environment of geothermal water and area.


Subject(s)
Archaea , Bacteria , Biodiversity , Hot Springs , Metagenomics , Phylogeny , Soil Microbiology , Hot Springs/microbiology , India , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , RNA, Ribosomal, 16S/genetics , Microbiota , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL