Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Chem Sci ; 14(45): 12973-12983, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38023519

ABSTRACT

Squalene synthase (SQS) is an essential enzyme in the mevalonate pathway, which controls cholesterol biosynthesis and homeostasis. Although catalytic inhibitors of SQS have been developed, none have been approved for therapeutic use so far. Herein we sought to develop SQS degraders using targeted protein degradation (TPD) to lower overall cellular cholesterol content. We found that KY02111, a small molecule ligand of SQS, selectively causes SQS to degrade in a proteasome-dependent manner. Unexpectedly, compounds based on the same scaffold linked to E3 ligase recruiting ligands led to SQS stabilization. Proteomic analysis found KY02111 to reduce only the levels of SQS, while lipidomic analysis determined that KY02111-induced degradation lowered cellular cholesteryl ester content. Stabilizers shielded SQS from its natural turnover without recruiting their matching E3 ligase or affecting enzymatic target activity. Our work shows that degradation of SQS is possible despite a challenging biological setting and provides the first chemical tools to degrade and stabilize SQS.

2.
Nat Rev Mol Cell Biol ; 24(11): 777-796, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37528230

ABSTRACT

Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.

4.
Blood Cancer J ; 13(1): 12, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36631435

ABSTRACT

Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.


Subject(s)
Amino Acyl-tRNA Synthetases , Multiple Myeloma , Humans , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism
5.
EMBO J ; 41(6): e109845, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35170763

ABSTRACT

The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Saccharomyces cerevisiae Proteins , Endoplasmic Reticulum/metabolism , Homeostasis , Proteolysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
6.
J Biol Chem ; 298(2): 101542, 2022 02.
Article in English | MEDLINE | ID: mdl-34968463

ABSTRACT

The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included ß2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I , Major Histocompatibility Complex , Minor Histocompatibility Antigens , P-type ATPases , Histocompatibility Antigens Class I/metabolism , Humans , Major Histocompatibility Complex/immunology , Minor Histocompatibility Antigens/immunology , P-type ATPases/immunology
7.
EMBO Rep ; 23(1): e53210, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34918864

ABSTRACT

The ER membrane protein complex (EMC) is required for the biogenesis of a subset of tail anchored (TA) and polytopic membrane proteins, including Rhodopsin-1 (Rh1) and the TRP channel. To understand the physiological implications of EMC-dependent membrane protein biogenesis, we perform a bioinformatic identification of Drosophila TA proteins. From 254 predicted TA proteins, screening in larval eye discs identified two proteins that require EMC for their biogenesis: fan and Xport-A. Fan is required for male fertility in Drosophila and we show that EMC is also required for this process. Xport-A is essential for the biogenesis of both Rh1 and TRP, raising the possibility that disruption of Rh1 and TRP biogenesis in EMC mutants is secondary to the Xport-A defect. We show that EMC is required for Xport-A TMD membrane insertion and that EMC-independent Xport-A mutants rescue Rh1 and TRP biogenesis in EMC mutants. Finally, our work also reveals a role for Xport-A in a glycosylation-dependent triage mechanism during Rh1 biogenesis in the endoplasmic reticulum.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Drosophila Proteins , Molecular Chaperones , Repressor Proteins , Rhodopsin , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endoplasmic Reticulum/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Rhodopsin/genetics
8.
Elife ; 92020 07 02.
Article in English | MEDLINE | ID: mdl-32614325

ABSTRACT

Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.


Subject(s)
Endoplasmic Reticulum/metabolism , Immunity, Innate , Protein Interaction Mapping , Protein Interaction Maps , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Proteomics
9.
J Cell Sci ; 133(8)2020 04 24.
Article in English | MEDLINE | ID: mdl-32332093

ABSTRACT

Integral membrane proteins play key functional roles at organelles and the plasma membrane, necessitating their efficient and accurate biogenesis to ensure appropriate targeting and activity. The endoplasmic reticulum membrane protein complex (EMC) has recently emerged as an important eukaryotic complex for biogenesis of integral membrane proteins by promoting insertion and stability of atypical and sub-optimal transmembrane domains (TMDs). Although confirmed as a bona fide complex almost a decade ago, light is just now being shed on the mechanism and selectivity underlying the cellular responsibilities of the EMC. In this Review, we revisit the myriad of functions attributed the EMC through the lens of these new mechanistic insights, to address questions of the cellular and organismal roles the EMC has evolved to undertake.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Homeostasis , Intracellular Membranes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Biosynthesis
10.
Proc Natl Acad Sci U S A ; 116(47): 23671-23681, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31690657

ABSTRACT

Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.


Subject(s)
Antigen-Presenting Cells/immunology , Dendritic Cells/immunology , Endoplasmic Reticulum Stress/immunology , Lymphocyte Activation , Natural Killer T-Cells/immunology , Animals , Antigen Presentation , Antigens, CD1d/biosynthesis , Antigens, CD1d/immunology , Autoantigens/immunology , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Coculture Techniques , Cytoskeleton/ultrastructure , Endosomes/immunology , Glycosphingolipids/immunology , Glycosphingolipids/metabolism , Humans , Interleukin-2 Receptor alpha Subunit/biosynthesis , Lipids/immunology , Lysosomes/immunology , Mice , Mice, Inbred C57BL , THP-1 Cells , Thapsigargin/pharmacology , Unfolded Protein Response/immunology , eIF-2 Kinase/deficiency , eIF-2 Kinase/physiology
11.
Nat Commun ; 10(1): 3956, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477691

ABSTRACT

Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity.


Subject(s)
Anoctamins/metabolism , Endoplasmic Reticulum/metabolism , Lipids/chemistry , Phospholipid Transfer Proteins/metabolism , Amino Acid Sequence , Animals , Anoctamins/chemistry , Anoctamins/genetics , COS Cells , Calcium/chemistry , Cell Line, Tumor , Chlorocebus aethiops , Crystallography, X-Ray , HEK293 Cells , Humans , Molecular Dynamics Simulation , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Sequence Homology, Amino Acid , Sf9 Cells , Spodoptera
12.
Elife ; 82019 03 14.
Article in English | MEDLINE | ID: mdl-30869076

ABSTRACT

How endoplasmic reticulum (ER) stress leads to cytotoxicity is ill-defined. Previously we showed that HeLa cells readjust homeostasis upon proteostatically driven ER stress, triggered by inducible bulk expression of secretory immunoglobulin M heavy chain (µs) thanks to the unfolded protein response (UPR; Bakunts et al., 2017). Here we show that conditions that prevent that an excess of the ER resident chaperone (and UPR target gene) BiP over µs is restored lead to µs-driven proteotoxicity, i.e. abrogation of HRD1-mediated ER-associated degradation (ERAD), or of the UPR, in particular the ATF6α branch. Such conditions are tolerated instead upon removal of the BiP-sequestering first constant domain (CH1) from µs. Thus, our data define proteostatic ER stress to be a specific consequence of inadequate BiP availability, which both the UPR and ERAD redeem.


Subject(s)
Endoplasmic Reticulum Stress , Epithelial Cells/physiology , Heat-Shock Proteins/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum-Associated Degradation , HeLa Cells , Humans , Proteostasis , Unfolded Protein Response
13.
Nat Immunol ; 20(3): 350-361, 2019 03.
Article in English | MEDLINE | ID: mdl-30718914

ABSTRACT

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Subject(s)
Agammaglobulinemia/immunology , B-Lymphocytes/immunology , Cation Transport Proteins/immunology , Zinc/immunology , Agammaglobulinemia/genetics , Agammaglobulinemia/metabolism , Animals , B-Lymphocytes/metabolism , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Child, Preschool , Cytosol/immunology , Cytosol/metabolism , Disease Models, Animal , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , Humans , Infant , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pedigree , Zinc/metabolism
14.
J Cell Sci ; 132(2)2019 01 16.
Article in English | MEDLINE | ID: mdl-30578317

ABSTRACT

The eukaryotic endoplasmic reticulum (ER) membrane contains essential complexes that oversee protein biogenesis and lipid metabolism, impacting nearly all aspects of cell physiology. The ER membrane protein complex (EMC) is a newly described transmembrane domain (TMD) insertase linked with various phenotypes, but whose clients and cellular responsibilities remain incompletely understood. We report that EMC deficiency limits the cellular boundaries defining cholesterol tolerance, reflected by diminished viability with limiting or excessive extracellular cholesterol. Lipidomic and proteomic analyses revealed defective biogenesis and concomitant loss of the TMD-containing ER-resident enzymes sterol-O-acyltransferase 1 (SOAT1) and squalene synthase (SQS, also known as FDFT1), which serve strategic roles in the adaptation of cells to changes in cholesterol availability. Insertion of the weakly hydrophobic tail-anchor (TA) of SQS into the ER membrane by the EMC ensures sufficient flux through the sterol biosynthetic pathway while biogenesis of polytopic SOAT1 promoted by the EMC provides cells with the ability to store free cholesterol as inert cholesteryl esters. By facilitating insertion of TMDs that permit essential mammalian sterol-regulating enzymes to mature accurately, the EMC is an important biogenic determinant of cellular robustness to fluctuations in cholesterol availability.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cholesterol/biosynthesis , Endoplasmic Reticulum/enzymology , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Intracellular Membranes/enzymology , Multienzyme Complexes/metabolism , Sterol O-Acyltransferase/metabolism , Cell Line, Tumor , Cholesterol/genetics , Endoplasmic Reticulum/genetics , Farnesyl-Diphosphate Farnesyltransferase/genetics , Humans , Multienzyme Complexes/genetics , Sterol O-Acyltransferase/genetics
15.
EMBO J ; 37(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29378775

ABSTRACT

Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of ß-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions.


Subject(s)
Adenocarcinoma/metabolism , Colon/metabolism , Colonic Neoplasms/metabolism , Endoplasmic Reticulum-Associated Degradation , Gene Expression Regulation , Wnt Proteins/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Adenocarcinoma/genetics , Cells, Cultured , Colonic Neoplasms/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Wnt Proteins/genetics
16.
Science ; 359(6374): 470-473, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29242231

ABSTRACT

Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed the insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms.


Subject(s)
Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/chemistry , HEK293 Cells , Humans , Intracellular Membranes/chemistry , Membrane Proteins/chemistry , Protein Domains , Protein Transport
17.
J Cell Sci ; 130(19): 3322-3335, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28827405

ABSTRACT

The mammalian ubiquitin ligase Hrd1 is the central component of a complex facilitating degradation of misfolded proteins during the ubiquitin-proteasome-dependent process of ER-associated degradation (ERAD). Hrd1 associates with cofactors to execute ERAD, but their roles and how they assemble with Hrd1 are not well understood. Here, we identify crucial cofactor interaction domains within Hrd1 and report a previously unrecognised evolutionarily conserved segment within the intrinsically disordered cytoplasmic domain of Hrd1 (termed the HAF-H domain), which engages complementary segments in the cofactors FAM8A1 and Herp (also known as HERPUD1). This domain is required by Hrd1 to interact with both FAM8A1 and Herp, as well as to assemble higher-order Hrd1 complexes. FAM8A1 enhances binding of Herp to Hrd1, an interaction that is required for ERAD. Our findings support a model of Hrd1 complex formation, where the Hrd1 cytoplasmic domain and FAM8A1 have a central role in the assembly and activity of this ERAD machinery.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/physiology , Membrane Proteins/metabolism , Models, Biological , Ubiquitin-Protein Ligases/metabolism , HEK293 Cells , Humans , Membrane Proteins/genetics , Ubiquitin-Protein Ligases/genetics
18.
Mol Cell ; 63(6): 990-1005, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27591049

ABSTRACT

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.


Subject(s)
NF-kappa B/chemistry , Proteins/chemistry , Tumor Suppressor Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Deubiquitinating Enzyme CYLD , Endopeptidases/chemistry , Endopeptidases/genetics , Endopeptidases/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Humans , Immunity, Innate , Kinetics , Molecular Docking Simulation , NF-kappa B/genetics , NF-kappa B/immunology , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Proteins/genetics , Proteins/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Substrate Specificity , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology , Ubiquitin/genetics , Ubiquitin/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
19.
Nat Cell Biol ; 18(7): 724-6, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27350445

ABSTRACT

Clearing misfolded proteins from the cytoplasm is essential to maintain cellular homeostasis. Now, a parallel clearance system is described that uses the deubiquitylase USP19 to enable secretion of misfolded cytoplasmic proteins when conventional proteasomal degradation is compromised. Misfolding-associated protein secretion (MAPS) has important implications for protein quality control and prion-like transmission.


Subject(s)
Cytoplasm/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Folding , Ubiquitin-Protein Ligases/metabolism , Animals , Homeostasis/physiology , Humans , Protein Transport
20.
EMBO J ; 35(13): 1400-16, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27234298

ABSTRACT

Skp1-Cul1-F-box protein (SCF) ubiquitin ligases direct cell survival decisions by controlling protein ubiquitylation and degradation. Sufu (Suppressor of fused) is a central regulator of Hh (Hedgehog) signaling and acts as a tumor suppressor by maintaining the Gli (Glioma-associated oncogene homolog) transcription factors inactive. Although Sufu has a pivotal role in Hh signaling, the players involved in controlling Sufu levels and their role in tumor growth are unknown. Here, we show that Fbxl17 (F-box and leucine-rich repeat protein 17) targets Sufu for proteolysis in the nucleus. The ubiquitylation of Sufu, mediated by Fbxl17, allows the release of Gli1 from Sufu for proper Hh signal transduction. Depletion of Fbxl17 leads to defective Hh signaling associated with an impaired cancer cell proliferation and medulloblastoma tumor growth. Furthermore, we identify a mutation in Sufu, occurring in medulloblastoma of patients with Gorlin syndrome, which increases Sufu turnover through Fbxl17-mediated polyubiquitylation and leads to a sustained Hh signaling activation. In summary, our findings reveal Fbxl17 as a novel regulator of Hh pathway and highlight the perturbation of the Fbxl17-Sufu axis in the pathogenesis of medulloblastoma.


Subject(s)
F-Box Proteins/metabolism , Hedgehog Proteins/metabolism , Medulloblastoma/pathology , Protein Processing, Post-Translational , Repressor Proteins/metabolism , Animals , Cell Line , Cell Proliferation , Disease Models, Animal , Humans , Mice , Rats , Signal Transduction , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL