Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 195(1): 479-501, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38227428

ABSTRACT

Flowering is an essential process in fruit trees. Flower number and timing have a substantial impact on the yield and maturity of fruit. Ethylene and gibberellin (GA) play vital roles in flowering, but the mechanism of coordinated regulation of flowering in woody plants by GA and ethylene is still unclear. In this study, a lemon (Citrus limon L. Burm) 1-aminocyclopropane-1-carboxylic acid synthase gene (CiACS4) was overexpressed in Nicotiana tabacum and resulted in late flowering and increased flower number. Further transformation of citrus revealed that ethylene and starch content increased, and soluble sugar content decreased in 35S:CiACS4 lemon. Inhibition of CiACS4 in lemon resulted in effects opposite to that of 35S:CiACS4 in transgenic plants. Overexpression of the CiACS4-interacting protein ETHYLENE RESPONSE FACTOR3 (CiERF3) in N. tabacum resulted in delayed flowering and more flowers. Further experiments revealed that the CiACS4-CiERF3 complex can bind the promoters of FLOWERING LOCUS T (CiFT) and GOLDEN2-LIKE (CiFE) and suppress their expression. Moreover, overexpression of CiFE in N. tabacum led to early flowering and decreased flowers, and ethylene, starch, and soluble sugar contents were opposite to those in 35S:CiACS4 transgenic plants. Interestingly, CiFE also bound the promoter of CiFT. Additionally, GA3 and 1-aminocyclopropanecarboxylic acid (ACC) treatments delayed flowering in adult citrus, and treatment with GA and ethylene inhibitors increased flower number. ACC treatment also inhibited the expression of CiFT and CiFE. This study provides a theoretical basis for the application of ethylene to regulate flower number and mitigate the impacts of extreme weather on citrus yield due to delayed flowering.


Subject(s)
Citrus , Ethylenes , Flowers , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Plants, Genetically Modified , Gibberellins/metabolism , Citrus/genetics , Citrus/physiology , Citrus/growth & development , Flowers/genetics , Flowers/physiology , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Ethylenes/metabolism , Nicotiana/genetics , Nicotiana/physiology , Nicotiana/growth & development , Lyases/metabolism , Lyases/genetics
2.
Plant Physiol ; 192(3): 1947-1968, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36913259

ABSTRACT

Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.


Subject(s)
Citrus , Gibberellins , Gibberellins/pharmacology , Gibberellins/metabolism , Citrus/genetics , Citrus/metabolism , Ethylenes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
ACS Chem Neurosci ; 13(3): 330-339, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35044760

ABSTRACT

Parkinson's disease (PD) is a devastating disease of the central nervous system that occurs mainly in the elderly age group, affecting their quality of life. The PD pathogenesis is not yet fully understood and lacks the disease-modifying treatment strategies. Sanghuangprous vaninii (S. vaninii) is a perennial fungus with a plethora of pharmacological activities including anti-cancer and antioxidant activity and so on. However, no study till date has reported its neuroprotective effect against symptoms that are similar to PD in pre-clinical investigation. In the current study, we investigated anti-PD-like effects of S. vaninii mycelium extracts (SvMEs) on MPTP-induced PD in zebrafish. We observed that the loss of dopaminergic neurons and neurovascular reduction were reversed by using SvMEs in the zebrafish brain in a concentration-independent manner. Moreover, it also relieved locomotor impairments in MPTP-induced PD zebrafish. In addition, SvMEs exerted significant antioxidant activity in vitro, which was also demonstrated in vivo on ktr4:NTR-hKikGR zebrafish. Upon investigating the underlying mechanism, we found that SvMEs may alleviate oxidant stress and accelerate α-synuclein degradation and then alleviate PD-like symptoms. Antioxidant-related genes (sod1, gss, gpx4a, gclm, and cat) implied that the SvMEs exhibited anti-PD activity due to the antioxidation mechanism. Finally, upon analysis of chemical composition of SvMEs by liquid chromatography-mass spectrometry, we identified 10 compounds that are plausibly responsible for the anti-PD-like effect of SvMEs. On the limiting part, the finding of the study would have been more robust had we investigated the protein expression of genes related to PD and oxidative stress and compared the effects of SvMEs with any standard anti-PD therapy. Despite this, our results indicated that SvMEs possess anti-PD effects, indicating SvMEs as a potential candidate that is worth exploring further in this avenue.


Subject(s)
Basidiomycota , MPTP Poisoning , Neuroprotective Agents , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Disease Models, Animal , Dopaminergic Neurons/metabolism , MPTP Poisoning/pathology , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Quality of Life , Zebrafish
4.
J Phys Chem A ; 117(8): 1784-94, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23343226

ABSTRACT

Various radical-scavenging activities (RSA) assessment assays are based on discrete mechanisms and on using different radical sources. Few studies have analyzed the structural significance of flavonoids in their peroxyl radical activities in the oxygen radical absorbance capacity (ORAC) assay. In this study, the RSA of 13 flavonoids in two ORAC assays with different probes (fluorescein and pyrogallol red) were investigated. Neither O-H bond dissociation enthalpy nor ionization potential values of flavonoids correlated with ORAC values. The proton affinity (PA) and electron transfer enthalpy (ETE) values, which were obtained via the sequential proton-loss electron-transfer mechanism, were significantly associated with the ORAC(pyrogallol Red) and ORAC(fluorescein) assays, respectively. Thus, PA represented the kinetic aspect of RSA, whereas ETE reflected the RSA extent. The PA values and the most acidic sites of flavonoids were affected by intramolecular electronic interactions, H-bonding, 3-hydroxyl group in the C ring, and conjugation systems. The stability of the deprotonated flavonoid determined the ETE value. Apart from the PA and ETE values in the first oxidation step of flavonoids, the PA and ETE values in the second oxidation step also affected the ORAC values of flavonoids.


Subject(s)
Flavonoids/chemistry , Quantum Theory , Reactive Oxygen Species/chemistry , Catalytic Domain , Molecular Structure
5.
Eur J Med Chem ; 46(9): 4548-58, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21824690

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and its incidence is rising worldwide. We compared the antioxidant capacity of seventeen flavonoids with their inhibitory effects on oleic acid-induced triglyceride (TG) over-accumulation in HepG2 cells. The results showed significant correlations (P < 0.01) between the inhibition of intracellular TG levels and the suppression effects on reactive oxygen species. Nevertheless, the radical-reducing activities of flavonoids assessed by chemical assays (cyclic voltammetry and Folin-Ciocalteu reagent assay) were poorly correlated with their intracellular TG inhibitory effects. The relationships between structural properties of flavonoids and their inhibitory effects on TG over-accumulation were discussed.


Subject(s)
Antioxidants/pharmacology , Fatty Liver/prevention & control , Flavonoids/pharmacology , Oleic Acid/antagonists & inhibitors , Cell Line , Fatty Liver/metabolism , Humans , In Vitro Techniques , Oleic Acid/pharmacology , Reactive Oxygen Species/metabolism , Triglycerides/metabolism
6.
J Agric Food Chem ; 59(18): 10277-85, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21827150

ABSTRACT

Flavonoids often show inconsistent antioxidant activities (AAs) depending on the assay used. The electrochemical properties of 14 flavonoid standards in cyclic voltammetry [area under anodic wave (Q) and oxidant peak potentials (Epa)] and the structural parameters [bond dissociation enthalpy (BDE) and ionization potential (IP)] were investigated. They were compared with the results of four spectrophotometric assays, namely, diphenyl-1-picrylhydrazyl (DPPH), Folin-Ciocalteu reagent (FCR), ferric reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC), to analyze the chemical reasons for the varying AAs of flavonoids under different assays. Using the cyclic voltammetry method, the AAs of the flavonoids in the DPPH, FCR, and FRAP assays were mainly determined by the ease of charge transferring in the first oxidation step. Meanwhile, the results of TEAC assays were primarily influenced by the amount of charge transfer in the multiple oxidation steps (MOS) of flavonoids. In the theoretical calculation, the BDE values of the selected flavonoids had considerably higher correlations with the results of the DPPH assay (r2=0.89) compared with the other three assays, which indicates that the oxidant-scavenging reaction of the tested flavonoids in the DPPH assay is closer to a hydrogen atom transfer mechanism. Neither the IP values nor BDE values had satisfactory correlation with the AAs of the flavonoids in the TEAC assay (r2=0.57, r2=0.54, respectively), Therefore, complex reaction mechanisms underlie this method and appropriate structural descriptors for reflecting the AAs of flavonoids based on MOS (e.g., TEAC values) need further investigation.


Subject(s)
Antioxidants/chemistry , Flavonoids/chemistry , Spectrophotometry/methods , Antioxidants/pharmacology , Electrochemical Techniques , Flavonoids/pharmacology , Oxidation-Reduction , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL