Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 572
Filter
1.
Angew Chem Int Ed Engl ; : e202404598, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945836

ABSTRACT

Acetic acid (AA), a vital compound in chemical production and materials manufacturing, is conventionally synthesized by starting with coal or methane through multiple steps including high-temperature transformations. Here we present a new synthesis of AA from ethane through photocatalytic selective oxidation of ethane by H2O2 at 0-25°C. The catalyst designed for this process comprises g-C3N4 with anchored Pd1 single-atom sites. In-situ studies and computational simulation suggest the immobilized Pd1 atom becomes positively charged under photocatalytic condition. Under photoirradiation, the holes on the Pd1 single-atom of OH-Pd1Å/g-C3N4 serves as a catalytic site for activating a C-H instead of C-C of C2H6 with a low activation barrier of 0.14 eV, through a concerted mechanism. Remarkably, the selectivity for synthesizing AA reaches 98.7%, achieved under atmospheric pressure of ethane at 0°C. By integrating photocatalysis with thermal catalysis, we introduce a highly selective, environmentally friendly, energy-efficient synthetic route for AA, starting from ethane, presenting a promising alternative for AA synthesis. This integration of photocatalysis in low-temperature oxidation demonstrates a new route of selective oxidation of light alkanes.

2.
Cell Metab ; 36(6): 1320-1334.e9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838643

ABSTRACT

Circadian homeostasis in mammals is a key intrinsic mechanism for responding to the external environment. However, the interplay between circadian rhythms and the tumor microenvironment (TME) and its influence on metastasis are still unclear. Here, in patients with colorectal cancer (CRC), disturbances of circadian rhythm and the accumulation of monocytes and granulocytes were closely related to metastasis. Moreover, dysregulation of circadian rhythm promoted lung metastasis of CRC by inducing the accumulation of myeloid-derived suppressor cells (MDSCs) and dysfunctional CD8+ T cells in the lungs of mice. Also, gut microbiota and its derived metabolite taurocholic acid (TCA) contributed to lung metastasis of CRC by triggering the accumulation of MDSCs in mice. Mechanistically, TCA promoted glycolysis of MDSCs epigenetically by enhancing mono-methylation of H3K4 of target genes and inhibited CHIP-mediated ubiquitination of PDL1. Our study links the biological clock with MDSCs in the TME through gut microbiota/metabolites in controlling the metastatic spread of CRC, uncovering a systemic mechanism for cancer metastasis.


Subject(s)
Circadian Clocks , Gastrointestinal Microbiome , Myeloid-Derived Suppressor Cells , Animals , Mice , Myeloid-Derived Suppressor Cells/metabolism , Humans , Neoplasm Metastasis , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Mice, Inbred C57BL , Male , Tumor Microenvironment , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Female , Mice, Inbred BALB C , Cell Line, Tumor
3.
Clin Breast Cancer ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38834497

ABSTRACT

PURPOSE: The objective of this systematic review and meta-analysis was to evaluate the impact of kinesiology taping on individuals suffering from breast cancer-related lymphedema. METHODS AND METHODS: We conducted a comprehensive search in PubMed, Cochrane Library, and Embase databases, spanning from their inception date to December 20, 2023, to identify pertinent studies. Inclusion criteria comprised studies that (1) enrolled participants diagnosed with breast cancer-related lymphedema; (2) implemented kinesiology taping as the intervention; (3) incorporated either complete decongestive therapy, exercise, or sham taping as the control treatment; and (4) included clinical measurements such as the severity of lymphedema, upper limb function assessment, quality of life, and perceived comfort. RESULTS: Information was extracted from 14 randomized controlled trials (RCTs). The analyses demonstrated statistically significant improvement, indicating a preference for kinesiology taping in the outcomes of upper limb functional assessment (standardized mean difference [SMD] = -0.88, 95% confidence interval [CI]: [-1.22, -0.55]), quality of life (SMD = 0.50, 95% CI: [0.16, 0.84]), and perceived comfort (SMD = 0.85, 95% CI: [0.34, 1.36]). CONCLUSION: The findings suggest that kinesiology taping could be considered a viable option for individuals dealing with breast cancer-related lymphedema. Nevertheless, acknowledging certain limitations within this study, further confirmation of its benefits necessitates additional larger-scale and better-designed RCTs.

4.
Immunity ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38908373

ABSTRACT

Prolonged activation of the type I interferon (IFN-I) pathway leads to autoimmune diseases such as systemic lupus erythematosus (SLE). Metabolic regulation of cytokine signaling is critical for cellular homeostasis. Through metabolomics analyses of IFN-ß-activated macrophages and an IFN-stimulated-response-element reporter screening, we identified spermine as a metabolite brake for Janus kinase (JAK) signaling. Spermine directly bound to the FERM and SH2 domains of JAK1 to impair JAK1-cytokine receptor interaction, thus broadly suppressing JAK1 phosphorylation triggered by cytokines IFN-I, IFN-II, interleukin (IL)-2, and IL-6. Peripheral blood mononuclear cells (PBMCs) from individuals with SLE showing decreased spermine concentrations exhibited enhanced IFN-I and lupus gene signatures. Spermine treatment attenuated autoimmune pathogenesis in SLE and psoriasis mice and reduced IFN-I signaling in monocytes from individuals with SLE. We synthesized a spermine derivative (spermine derivative 1 [SD1]) and showed that it had a potent immunosuppressive function. Our findings reveal spermine as a metabolic checkpoint for cellular homeostasis and a potential immunosuppressive molecule for controlling autoimmune disease.

5.
Eur J Med Chem ; 275: 116570, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38878517

ABSTRACT

Broussonetine S (9), its C-1' and C-10' stereoisomers, and their corresponding enantiomers have been synthesized from enantiomeric arabinose-derived cyclic nitrones, with cross metathesis (CM), epoxidation and Keck asymmetric allylation as key steps. Glycosidase inhibition assays showed that broussonetine S (9) and its C-10' epimer (10'-epi-9) were nanomolar inhibitors of bovine liver ß-galactosidase and ß-glucosidase; while their C-1' stereoisomers were 10-fold less potent towards these enzymes. The glycosidase inhibition results and molecular docking calculations revealed the importance of the configurations of pyrrolidine core and C-1' hydroxyl for inhibition potency and spectra. Together with the docking calculations we previously reported for α-1-C-alkyl-DAB derivatives, we designed and synthesized a series of 6-C-alkyl-DMDP derivatives with very simple alkyl chains. The inhibition potency of these derivatives was enhanced by increasing the length of the side chain, and maintained at nanomolar scale inhibitions of bovine liver ß-glucosidase and ß-galactosidase after the alkyl groups are longer than eight or ten carbons for the (6R)-C-alkyl-DMDP derivatives and their 6S epimers, respectively. Molecular docking calculations indicated that each series of 6-C-alkyl-DMDP derivatives resides in the same active site of ß-glucosidase or ß-galactosidase with basically similar binding conformations, and their C-6 long alkyl chains extend outwards along the hydrophobic groove with similar orientations. The increasing inhibitions of ß-glucosidase and ß-galactosidase with the number of carbon atoms in the side chains may be explained by improved adaptability of longer alkyl chains in the hydrophobic grooves. In addition, the lower ß-glucosidase and ß-galactosidase inhibitions of (6S)-C-alkyl-DMDP derivatives than their C-6 R stereoisomers can be attributed to the misfolding of their alkyl chains and resulted decreased adaptability in the hydrophobic groove. The work reported herein is valuable for design and development of more potent and selective inhibitors of ß-galactosidase and ß-glucosidase, which have potential in treatment of lysosomal storage diseases. Furthermore, part of the 6-C-alkyl-DMDP derivatives and their enantiomers were also tested as potential anti-cancer agents; all the compounds tested were found with moderate cytotoxic effects on MKN45 cells, which would indicate potential applications of these iminosugars in development of novel anticancer agents.

6.
Plant Cell ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922302

ABSTRACT

Variation in gene expression levels is pervasive among individuals and races or varieties, and has substantial agronomic consequences, for example, by contributing to hybrid vigor. Gene expression level variation results from mutations in regulatory sequences (cis) and/or transcription factor (TF) activity (trans), but the mechanisms underlying cis and/or trans-regulatory variation of complex phenotypes remain largely unknown. Here, we investigated gene expression variation mechanisms underlying the differential accumulation of the insecticidal compounds maysin and chlorogenic acid in silks of two widely used maize (Zea mays) inbreds, B73 and A632. By combining transcriptomics and cistromics, we identified 1,338 silk direct targets of the maize R2R3-MYB TF Pericarp color1 (P1), consistent with it being a regulator of maysin and chlorogenic acid biosynthesis. Among these P1 targets, 464 showed allele-specific expression (ASE) between B73 and A632 silks. Allelic DNA-affinity purification sequencing identified 34 examples in which P1 allelic specific binding (ASB) correlated with cis-expression variation. From previous yeast one-hybrid studies, we identified nine TFs potentially implicated in the control of P1 targets, with ASB to 83 out of 464 ASE genes (cis) and differential expression of 4 out of 9 TFs between B73 and A632 silks (trans). These results provide a molecular framework for understanding universal mechanisms underlying natural variation of gene expression levels, and how the regulation of metabolic diversity is established.

7.
Eur J Med Chem ; 273: 116507, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38776806

ABSTRACT

Careful recruitment of the components of the HDAC inhibitory template culminated in veliparib-based anilide 8 that elicited remarkable cell growth inhibitory effects against HL-60 cell lines mediated via dual modulation of PARP [(IC50 (PARP1) = 0.02 nM) and IC50 (PARP2) = 1 nM)] and HDACs (IC50 value = 0.05, 0.147 and 0.393 µM (HDAC1, 2 and 3). Compound 8 downregulated the expression levels of signatory biomarkers of PARP and HDAC inhibition. Also, compound 8 arrested the cell cycle at the G0/G1 phase and induced autophagy. Polymer nanoformulation (mPEG-PCl copolymeric micelles loaded with compound 8) was prepared by the nanoprecipitation technique. The mPEG-PCL diblock copolymer was prepared by ring-opening polymerization method using stannous octoate as a catalyst. The morphology of the compound 8@mPEG-PCL was examined using TEM and the substance was determined to be monodispersed, spherical in form, and had an average diameter of 138 nm. The polymer nanoformulation manifested pH-sensitive behaviour as a greater release of compound 8 was observed at 6.2 pH as compared to 7.4 pH mimicking physiological settings. The aforementioned findings indicate that the acidic pH of the tumour microenvironment might stimulate the nanomedicine release which in turn can attenuate the off-target effects precedentially claimed to be associated with HDAC inhibitors.


Subject(s)
Antineoplastic Agents , Benzimidazoles , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Polyethylene Glycols , Humans , Hydrogen-Ion Concentration , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , HL-60 Cells , Nanoparticles/chemistry , Molecular Structure , Micelles , Structure-Activity Relationship , Dose-Response Relationship, Drug , Polyesters/chemistry , Polyesters/pharmacology , Polyesters/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis
8.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2776-2782, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812178

ABSTRACT

This study explore the molecular mechanism of the synergistic effect of Chinese Yam polysaccharides and nucleoside analogues(NAs) on hepatitis B virus(HBV) resistance. Different concentrations of Chinese Yam polysaccharide and entecavir were ad-ded to HepG2.2.15 cells. After the cytotoxicity was detected by cell counting kit-8(CCK-8), the optimal concentration and time of the two drugs to inhibit HepG2.2.15 cells were screened out. They were divided into control group, Chinese Yam polysaccharide group, entecavir group and combination drug group(Chinese Yam polysaccharide + entecavir). The drugs were added to HepG2.2.15 cells, ELISA was used to detect the effects of each group of drugs on the secretion of hepatitis B virus surface antigen(HBsAg) and hepatitis B virus e antigen(HBeAg) in cell supernatant, probe quantitative real-time PCR(probe qRT-PCR) was used to detect the effects of drugs on HBV-DNA in HepG2.2.15 cells, and Western blot was used to detect the effects of each group of drugs on the expression of p38 MAPK, p-p38 MAPK, NTCP proteins in HepG2.2.15 cells. The qRT-PCR was used to detect the effect of drugs on the expression of p38 MAPK and NTCP mRNA in HepG2.2.15 cells. The results showed that compared with control group, the concentrations of HBeAg and HBsAg in Chinese Yam polysaccharide group, entecavir group and combination group decreased(P<0.01 or P<0.001), and both of them inhibited HBV-DNA in HepG2.2.15 cells(P<0.01), and the HBV-DNA inhibition of HepG2.2.15 cells in the combination group was more obvious(P<0.001), and the protein expression levels of p-p38 MAPK and NTCP were significantly decreased(P<0.05 or P<0.01), the mRNA expression level of p38 MAPK increased, and the mRNA expression level of NTCP decreased(P<0.05 or P<0.01). To sum up, Chinese Yam polysaccharide can reduce the expression of NTCP protein and mRNA through p38 MAPK signaling pathway and cooperate with entecavir in anti-HBV.


Subject(s)
Antiviral Agents , Dioscorea , Hepatitis B virus , Polysaccharides , p38 Mitogen-Activated Protein Kinases , Humans , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Polysaccharides/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Hep G2 Cells , Antiviral Agents/pharmacology , Dioscorea/chemistry , Drug Synergism , Nucleosides/pharmacology , MAP Kinase Signaling System/drug effects , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/metabolism , Hepatitis B/drug therapy , Hepatitis B/virology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Guanine/analogs & derivatives , Guanine/pharmacology
9.
Psychiatry Res ; 337: 115929, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718554

ABSTRACT

Multiple types of variations have been postulated to confer risk of schizophrenia and bipolar disorder, but majority of present GWAS solely focused on SNPs or small indels, and the impacts of structural variations (SVs) remain less understood. Nevertheless, accumulating evidence suggest that SVs may explain the association signals in certain GWAS hits. Here, we conducted pairwise linkage disequilibrium (LD) analyses of SNPs and SVs in populations from 1000 Genomes Project. Among the 299 psychiatric GWAS loci, 1213 SVs showed an LD of r2 > 0.1 with GWAS risk SNPs, and 66 of them were in moderate to strong LD (r2 > 0.6) with at least one GWAS risk SNP. Nine SVs were subject to further explorative analyses, including eQTL analysis in DLPFC, luciferase reporter gene assays, CRISPR/Cas9-mediated genome deletion and RT-qPCR. These assays highlighted several functional SVs showing regulatory effects on transcriptional activities, and some risk genes (e.g., BORCS7, GNL3) affected by the SVs were also annotated. Finally, mice overexpressing Borcs7 in the mPFC exhibited schizophrenia-like behaviors, such as abnormal prepulse inhibition and social dysfunction. These data suggest that SNPs association signals at GWAS loci might be driven by SVs, highlighting the necessities of considering such variants in future.


Subject(s)
Bipolar Disorder , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Schizophrenia , Schizophrenia/genetics , Bipolar Disorder/genetics , Humans , Animals , Mice , Linkage Disequilibrium , Genetic Predisposition to Disease , Male , Genomic Structural Variation/genetics , Quantitative Trait Loci , Mice, Inbred C57BL
10.
J Formos Med Assoc ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714417

ABSTRACT

BACKGROUND: Coffee and tea consumption has been linked to dementia. However, it remained unknown how sex and vascular risk factors modify the association. We aimed to investigate the association of coffee and tea consumption with dementia and whether sex and vascular comorbidities modified the association. METHODS: We included 278 elderly patients with Alzheimer's disease (AD) and 102 patients with vascular dementia (VaD) from three hospitals; controls (N = 468) were recruited during the same period. We collected the frequency and amount of coffee and tea consumption and the presence of vascular comorbidities. The multinomial logistic regression model was utilized to evaluate the association of coffee and tea consumption with dementia, stratified by sex and vascular comorbidities. RESULTS: Different combinations and quantities of coffee and tea consumption protected against AD and VaD. Consumption of ≥3 cups of coffee or tea per day was protective against AD [adjusted odds ratio (aOR) = 0.42; 95% confidence interval (CI) = 0.22-0.78)] and VaD (aOR = 0.42; 95% CI = 0.19-0.94). Stratified analyses showed that the protective effects of a higher quantity of coffee and tea against AD were more pronounced among females and individuals with hypertension. Consumption of either coffee or tea was associated with a decreased risk of VaD among diabetic participants (aOR = 0.23; 95% CI = 0.06-0.98). Hyperlipidemia modified the association of coffee or tea consumption on the risk of AD and VaD (both Pinteraction < 0.01). CONCLUSION: The risk of AD and VaD was lower with increased consumption of coffee and tea; the impact differed by sex and vascular comorbidities including hypertension, hyperlipidemia, and diabetes.

11.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791198

ABSTRACT

MTX-211 is a first-in-class dual inhibitor of epidermal growth factor receptor (EGFR) and phosphoinositide-3 kinase (PI3K) signaling pathways with a compelling pharmaceutical profile and could enhance the effectiveness of mitogen-activated protein kinase kinase (MEK) inhibitor therapy in colorectal tumors with KRAS mutations. However, the specific mechanisms contributing to the acquired resistance to MTX-211 in human cancers remain elusive. Here, we discovered that the overexpression of the ATP-binding cassette (ABC) drug transporter ABCG2, a prevalent mechanism associated with multidrug resistance (MDR), could diminish the effectiveness of MTX-211 in human cancer cells. We showed that the drug efflux activity of ABCG2 substantially decreased the intracellular accumulation of MTX-211 in cancer cells. As a result, the cytotoxicity and effectiveness of MTX-211 in suppressing the activation of the EGFR and PI3K pathways were significantly attenuated in cancer cells overexpressing ABCG2. Moreover, the enhancement of the MTX-211-stimulated ATPase activity of ABCG2 and the computational molecular docking analysis illustrating the binding of MTX-211 to the substrate-binding sites of ABCG2 offered a further indication for the interaction between MTX-211 and ABCG2. In summary, our findings indicate that MTX-211 acts as a substrate for ABCG2, underscoring the involvement of ABCG2 in the emergence of resistance to MTX-211. This finding carries clinical implications and merits further exploration.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Resistance, Neoplasm , ErbB Receptors , Neoplasm Proteins , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/antagonists & inhibitors , Cell Line, Tumor , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Signal Transduction/drug effects , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology
12.
Chemosphere ; 357: 142039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621488

ABSTRACT

The coexistence of free chlorine and bromide under sunlight irradiation (sunlight/FC with Br-) is unavoidable in outdoor seawater swimming pools, and the formation of brominated disinfection byproducts could act more harmful than chlorinated disinfection byproducts. In this study, benzotriazole was selected as a model compound to investigate the degradation rate and the subsequent formation of disinfection byproducts via sunlight/FC with Br- process. The rate constants for the degradation of benzotriazole under pseudo first order conditions in sunlight/FC with Br- and sunlight/FC are 2.3 ± 0.07 × 10-1 min-1 and 6.0 ± 0.7 × 10-2 min-1, respectively. The enhanced degradation of benzotriazole can be ascribed to the generation of HO•, bromine species, and reactive halogen species (RHS) during sunlight/FC with Br-. Despite the fact that sunlight/FC with Br- process enhanced benzotriazole degradation, the reaction results in increasing tribromomethane (TBM) formation. A high concentration (37.8 µg/L) of TBM was detected in the sunlight/FC with Br-, which was due to the reaction of RHS. The degradation of benzotriazole was notably influenced by the pH value (pH 4 - 11), the concentration of bromide (0 - 2 mM), and free chlorine (1 - 6 mg/L). Furthermore, the concentration of TBM increased when the free chlorine concentrations increased, implying the formation potential of harmful TBM in chlorinated seawater swimming pools.


Subject(s)
Bromides , Chlorine , Sunlight , Triazoles , Water Pollutants, Chemical , Triazoles/chemistry , Bromides/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Chlorine/chemistry , Disinfection , Trihalomethanes/chemistry , Seawater/chemistry , Disinfectants/chemistry , Disinfectants/analysis
13.
Front Oncol ; 14: 1280805, 2024.
Article in English | MEDLINE | ID: mdl-38601767

ABSTRACT

Hepatocellular carcinoma is a rather common malignant tumor. Most patients with hepatocellular carcinoma receive their diagnosis at an advanced stage, at which surgical resection is no longer appropriate. A growing body of research has demonstrated the value of convention therapy for patients with intermediate-stage hepatocellular carcinoma, while specific application protocols and treatment guidelines are not well developed. Emerging clinical researches suggest that a tyrosine kinase inhibitor in combination with an immune checkpoint inhibitor is a reasonable strategy for unresectable hepatocellular carcinoma. However, there are relatively few reports on the efficacy of apatinib and camrelizumab in the treatment of hepatocellular carcinoma. We were able to successfully remove one patient's hepatocellular carcinoma after 8 cycles of conversion therapy with apatinib (250 mg orally every day) and camrelizumab (200 mg intravenously every 2 weeks). The patient continued to receive the same dose of 16 cycles of apatinib and camrelizumab after hepatectomy. By the time of this study, the patient has completed 18 months of follow-up, and no tumor recurrence or metastasis was found in tumor markers and imaging examinations. Apatinib in combination with camrelizumab is an effective therapy for the treatment of advanced hepatocellular carcinoma, and surgical resection after this conversion therapy may provide patients with long-term oncological benefits. However, this requires more samples to validate the conclusion.

14.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38464086

ABSTRACT

Elucidating gene regulatory networks (GRNs) is a major area of study within plant systems biology. Phenotypic traits are intricately linked to specific gene expression profiles. These expression patterns arise primarily from regulatory connections between sets of transcription factors (TFs) and their target genes. In this study, we integrated publicly available co-expression networks derived from more than 6,000 RNA-seq samples, 283 protein-DNA interaction assays, and 16 million of SNPs used to identify expression quantitative loci (eQTL), to construct TF-target networks. In total, we analyzed ~4.6M interactions to generate four distinct types of TF-target networks: co-expression, protein-DNA interaction (PDI), trans-expression quantitative loci (trans-eQTL), and cis-eQTL combined with PDIs. To improve the functional annotation of TFs based on its target genes, we implemented three different strategies to integrate these four types of networks. We subsequently evaluated the effectiveness of our method through loss-of function mutant and random networks. The multi-network integration allowed us to identify transcriptional regulators of hormone-, metabolic- and development-related processes. Finally, using the topological properties of the fully integrated network, we identified potentially functional redundant TF paralogs. Our findings retrieved functions previously documented for numerous TFs and revealed novel functions that are crucial for informing the design of future experiments. The approach here-described lays the foundation for the integration of multi-omic datasets in maize and other plant systems.

15.
Surg Endosc ; 38(4): 2041-2049, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429572

ABSTRACT

BACKGROUND: In recent years, the incidence of gastrointestinal neuroendocrine tumors (GI-NETs) has remarkably increased due to the widespread use of screening gastrointestinal endoscopy. Currently, the most common treatments are surgery and endoscopic resection. Compared to surgery, endoscopic resection possesses a higher risk of resection margin residues for the treatment of GI-NETs. METHODS: A total of 315 patients who underwent surgery or endoscopic resection for GI-NETs were included. We analyzed their resection modality (surgery, ESD, EMR), margin status, Preoperative marking and Prognosis. RESULTS: Among 315 patients included, 175 cases underwent endoscopic resection and 140 cases underwent surgical treatment. A total of 43 (43/175, 24.57%) and 10 (10/140, 7.14%) patients exhibited positive resection margins after endoscopic resection and surgery, respectively. Multivariate regression analysis suggested that no preoperative marking and endoscopic treatment methods were risk factors for resection margin residues. Among the patients with positive margin residues after endoscopic resection, 5 patients underwent the radical surgical resection and 1 patient underwent additional ESD resection. The remaining 37 patients had no recurrence during a median follow-up of 36 months. CONCLUSIONS: Compared with surgery, endoscopic therapy has a higher margin residual rate. During endoscopic resection, preoperative marking may reduce the rate of lateral margin residues, and endoscopic submucosal dissection may be preferred than endoscopic mucosal resection. Periodical follow-up may be an alternative method for patients with positive margin residues after endoscopic resection.


Subject(s)
Endoscopic Mucosal Resection , Gastrointestinal Neoplasms , Neuroendocrine Tumors , Rectal Neoplasms , Humans , Margins of Excision , Neuroendocrine Tumors/surgery , Neuroendocrine Tumors/pathology , Treatment Outcome , Gastrointestinal Neoplasms/surgery , Gastrointestinal Neoplasms/pathology , Endoscopic Mucosal Resection/methods , Risk Factors , Retrospective Studies , Intestinal Mucosa/surgery , Rectal Neoplasms/surgery
16.
BMC Pediatr ; 24(1): 203, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519924

ABSTRACT

Langerhans cell histiocytosis (LCH) involving the gastrointestinal tract is a rare condition for which clinical experience is limited. We describe the cases of two patients who initially presented with chronic diarrhoea, hypoproteinaemia, and intermittent fever. These findings suggest that in cases of refractory diarrhoea accompanied by recurrent hypoalbuminaemia, especially with abdominal rash, LCH should be considered. Gastrointestinal endoscopy, biopsy, and imaging studies are essential for obtaining a definitive diagnosis. This approach might be helpful for the early recognition of gastrointestinal tract involvement in LCH.


Subject(s)
Histiocytosis, Langerhans-Cell , Hypoalbuminemia , Child , Humans , Hypoalbuminemia/complications , Hypoalbuminemia/pathology , Histiocytosis, Langerhans-Cell/complications , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/pathology , Gastrointestinal Tract/pathology , Biopsy , Diarrhea/complications
17.
Eur J Med Res ; 29(1): 109, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336819

ABSTRACT

INTRODUCTION: Salusins, which are translated from the alternatively spliced mRNA of torsin family 2 member A (TOR2A), play a vital role in regulation of various cardiovascular diseases. However, it remains unclear precisely regarding their roles in hypertrophic cardiomyopathy (HCM). Therefore, this study was conducted to explore therapeutic effect and the underlying mechanisms of salusins on HCM. MATERIAL AND METHODS: In vivo experiments, Sprague-Dawley rats were used to induce HCM model by angiotensin (Ang) II infusion for 4 weeks. The rats were randomly divided into four groups, namely, Saline + Control shRNA (n = 7), Ang II + Control shRNA (n = 8), Saline + TOR2A shRNA (n = 7), and Ang II + TOR2A shRNA groups (n = 8). After HCM induction, doppler echocardiography is recommended to evaluate heart function. In vitro experiments, primary neonatal rat cardiomyocytes (NRCMs) and cardiac fibroblasts (NRCFs) were obtained from newborn rats, and were treated with Ang II (10-6 M) for 24 h. RESULTS: After treatment with Ang II, levels of salusin-α and salusin-ß were elevated in serum and cardiac tissues of rats and in the neonatal rat cardiomyocytes and cardiac fibroblasts. Downregulation of salusins alleviated the Ang II-induced cardiac hypertrophy by suppressing the increased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (ß-MHC) and cardiac fibrosis by blocking collagen I, collagen III and transforming growth factor-beta (TGF-ß), and it also attenuated oxidative stress by suppressing the increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels and reversing the decreased superoxide dismutase (SOD) activity and autophagy by inhibiting the increased microtubule-associated protein light chain 3B (LC3B), Beclin1, autophagy related gene (Atg) 3 and Atg5 in the cardiac tissues of Ang II-infused rats and in the Ang II-treated NRCMs. CONCLUSIONS: All these findings suggest that the levels of salusins were elevated in the HCM, and targeting of salusins contributes to alleviation of cardiac hypertrophy and fibrosis probably via attenuating oxidative stress and autophagy. Accordingly, targeting of salusins may be a strategy for HCM therapy.


Subject(s)
Cardiomyopathy, Hypertrophic , Rats , Animals , Rats, Sprague-Dawley , Down-Regulation , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/metabolism , Myocytes, Cardiac , Angiotensin II/genetics , Angiotensin II/metabolism , Angiotensin II/pharmacology , Oxidative Stress , RNA, Small Interfering/adverse effects , RNA, Small Interfering/metabolism , Autophagy/genetics , Collagen/genetics
18.
COPD ; 21(1): 2301549, 2024 12.
Article in English | MEDLINE | ID: mdl-38348843

ABSTRACT

Exertional dyspnea, a key complaint of patients with chronic obstructive pulmonary disease (COPD), ultimately reflects an increased inspiratory neural drive to breathe. In non-hypoxemic patients with largely preserved lung mechanics - as those in the initial stages of the disease - the heightened inspiratory neural drive is strongly associated with an exaggerated ventilatory response to metabolic demand. Several lines of evidence indicate that the so-called excess ventilation (high ventilation-CO2 output relationship) primarily reflects poor gas exchange efficiency, namely increased physiological dead space. Pulmonary function tests estimating the extension of the wasted ventilation and selected cardiopulmonary exercise testing variables can, therefore, shed unique light on the genesis of patients' out-of-proportion dyspnea. After a succinct overview of the basis of gas exchange efficiency in health and inefficiency in COPD, we discuss how wasted ventilation translates into exertional dyspnea in individual patients. We then outline what is currently known about the structural basis of wasted ventilation in "minor/trivial" COPD vis-à-vis the contribution of emphysema versus a potential impairment in lung perfusion across non-emphysematous lung. After summarizing some unanswered questions on the field, we propose that functional imaging be amalgamated with pulmonary function tests beyond spirometry to improve our understanding of this deeply neglected cause of exertional dyspnea. Advances in the field will depend on our ability to develop robust platforms for deeply phenotyping (structurally and functionally), the dyspneic patients showing unordinary high wasted ventilation despite relatively preserved FEV1.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/complications , Exercise Tolerance/physiology , Lung , Dyspnea/etiology , Spirometry , Exercise Test
19.
Transl Psychiatry ; 14(1): 108, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388528

ABSTRACT

Poor sleep health is associated with a wide array of increased risk for cardiovascular, metabolic and mental health problems as well as all-cause mortality in observational studies, suggesting potential links between sleep health and lifespan. However, it has yet to be determined whether sleep health is genetically or/and causally associated with lifespan. In this study, we firstly studied the genome-wide genetic association between four sleep behaviors (short sleep duration, long sleep duration, insomnia, and sleep chronotype) and lifespan using GWAS summary statistics, and both sleep duration time and insomnia were negatively correlated with lifespan. Then, two-sample Mendelian randomization (MR) and multivariable MR analyses were applied to explore the causal effects between sleep behaviors and lifespan. We found that genetically predicted short sleep duration was causally and negatively associated with lifespan in univariable and multivariable MR analyses, and this effect was partially mediated by coronary artery disease (CAD), type 2 diabetes (T2D) and depression. In contrast, we found that insomnia had no causal effects on lifespan. Our results further confirmed the negative effects of short sleep duration on lifespan and suggested that extension of sleep may benefit the physical health of individuals with sleep loss. Further attention should be given to such public health issues.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Sleep Initiation and Maintenance Disorders , Humans , Genome-Wide Association Study , Longevity/genetics , Sleep/genetics , Sleep Initiation and Maintenance Disorders/genetics , Mendelian Randomization Analysis
20.
Biomedicines ; 12(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38397941

ABSTRACT

Hidradenitis suppurativa (HS), recognized as a chronic and debilitating skin disease, presents significant challenges in both diagnosis and treatment. This review explores the clinical manifestations, genetic landscape, and molecular mechanisms underlying HS. The disease's association with a predisposing genetic background, obesity, smoking, and skin occlusion underscores the complexity of its etiology. Genetic heterogeneity manifests in sporadic, familial, and syndromic forms, with a focus on mutations in the γ-secretase complex genes, particularly NCSTN. The dysregulation of immune mediators, including TNF-α, IL-17, IL-1ß, and IL-12/23, plays a crucial role in the chronic inflammatory nature of HS. Recent advancements in genetic research have identified potential therapeutic targets, leading to the development of anti-TNF-α, anti-IL-17, anti-IL-1α, and anti-IL-12/23 therapies and JAK inhibitors. These interventions offer promise in alleviating symptoms and improving the quality of life for HS patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...