Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(25): 12237-12247, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38847457

ABSTRACT

In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S-Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.

2.
Adv Mater ; 36(10): e2211624, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36952309

ABSTRACT

Understanding the interactions between amines and the surface of gold nanoparticles is important because of their role in the stabilization of the nanosystems, in the formation of the protein corona, and in the preparation of semisynthetic nanozymes. By using fluorescence spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and molecular simulation, a detailed picture of these interactions is obtained. Herein, it is shown that amines interact with surface Au(0) atoms of the nanoparticles with their lone electron pair with a strength linearly correlating with their basicity corrected for steric hindrance. The kinetics of binding depends on the position of the gold atoms (flat surfaces or edges) while the mode of binding involves a single Au(0) with nitrogen sitting on top of it. A small fraction of surface Au(I) atoms, still present, is reduced by the amines yielding a much stronger Au(0)-RN.+ (RN. , after the loss of a proton) interaction. In this case, the mode of binding involves two Au(0) atoms with a bridging nitrogen placed between them. Stable Au nanoparticles, as those required for robust semisynthetic nanozymes preparation, are better obtained when the protein is involved (at least in part) in the reduction of the gold ions.

3.
Sci Rep ; 13(1): 3882, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890286

ABSTRACT

We report on the growth and characterization of epitaxial YBa[Formula: see text]Cu[Formula: see text]O[Formula: see text] (YBCO) complex oxide thin films and related heterostructures exclusively by Pulsed Laser Deposition (PLD) and using first harmonic Nd:Y[Formula: see text]Al[Formula: see text]O[Formula: see text] (Nd:YAG) pulsed laser source ([Formula: see text] = 1064  nm). High-quality epitaxial YBCO thin film heterostructures display superconducting properties with transition temperature [Formula: see text] 80 K. Compared with the excimer lasers, when using Nd:YAG lasers, the optimal growth conditions are achieved at a large target-to-substrate distance d. These results clearly demonstrate the potential use of the first harmonic Nd:YAG laser source as an alternative to the excimer lasers for the PLD thin film community. Its compactness as well as the absence of any safety issues related to poisonous gas represent a major breakthrough in the deposition of complex multi-element compounds in form of thin films.

4.
ACS Omega ; 7(35): 31115-31119, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092584

ABSTRACT

Herein, we report the microscopic and spectroscopic signatures of the hydrated V2O5 phase, prepared from the α-V2O5 powder, which was kept in deionized water inside an airtight glass container for approximately 2.5 years. The experimental results show an evolution of the V4+ component in V 2p3/2 core energy level spectra, and a peak corresponding to σ-OH- bond appeared in the valence band spectra in the hydrated V2O5 powder sample due to the water intercalation. Vanadium metal oxide particles were found to be self-nucleated into micro/nanorods after a long period of exposure to an extremely humid environment. The distinct features in the spectra obtained with high-resolution transmission electron microscopy, micro-Raman scattering, and X-ray photoelectron spectroscopy confirmed the presence of structural water molecules for the first time in the long-aged naturally hydrated V2O5 phase.

5.
Nano Lett ; 22(14): 5990-5996, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35787096

ABSTRACT

Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal-insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal-insulator transition by implementing V2O3 thin films in devices.

6.
Adv Sci (Weinh) ; 9(16): e2105114, 2022 May.
Article in English | MEDLINE | ID: mdl-35384406

ABSTRACT

The formation and the evolution of electronic metallic states localized at the surface, commonly termed 2D electron gas (2DEG), represents a peculiar phenomenon occurring at the surface and interface of many transition metal oxides (TMO). Among TMO, titanium dioxide (TiO2 ), particularly in its anatase polymorph, stands as a prototypical system for the development of novel applications related to renewable energy, devices and sensors, where understanding the carrier dynamics is of utmost importance. In this study, angle-resolved photo-electron spectroscopy (ARPES) and X-ray absorption spectroscopy (XAS) are used, supported by density functional theory (DFT), to follow the formation and the evolution of the 2DEG in TiO2 thin films. Unlike other TMO systems, it is revealed that, once the anatase fingerprint is present, the 2DEG in TiO2 is robust and stable down to a single-unit-cell, and that the electron filling of the 2DEG increases with thickness and eventually saturates. These results prove that no critical thickness triggers the occurrence of the 2DEG in anatase TiO2 and give insight in formation mechanism of electronic states at the surface of TMO.

7.
ACS Appl Mater Interfaces ; 13(46): 55666-55675, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34758616

ABSTRACT

The properties of half-metallic manganite thin films depend on the composition and structure in the atomic scale, and consequently, their potential functional behavior can only be based on fine structure characterization. By combining advanced transmission electron microscopy, electron energy loss spectroscopy, density functional theory calculations, and multislice image simulations, we obtained evidence of a 7 nm-thick interface layer in La0.7Sr0.3MnO3 (LSMO) thin films, compatible with the formation of well-known dead layers in manganites, with an elongated out-of-plane lattice parameter and structural and electronic properties well distinguished from the bulk of the film. We observed, for the first time, a structural shift of Mn ions coupled with oxygen vacancies and a reduced Mn valence state within such layer. Understanding the correlation between oxygen vacancies, the Mn oxidation state, and Mn-ion displacements is a prerequisite to engineer the magnetotransport properties of LSMO thin films.

8.
Materials (Basel) ; 14(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34640221

ABSTRACT

We investigate the influence of position, under large circular sputtering targets, on the final electrochemical performance of 35 mm diameter button solid oxide fuel cells with sputter-deposited Gadolinium doped Ceria barrier layers, positioned in order to almost cover the entirety of the area associated with a 120 × 80 mm2 industrial cell. We compare the results obtained via structural and morphological analysis to the Electrochemical Impedance Spectroscopy (EIS) measurements performed on the button cells, disentangling the role of different parameters. The Atomic Force Microscopy analysis makes it possible to observe a decrease in the roughness values from the peripheral to the central zones under the sputtering target, with peak-to-valley roughness values, respectively, decreasing from 380 nm to 300 nm, while Scanning Electron Microscopy and Energy Dispersive Spectroscopy show a dependence of the layer coverage from the position. The electrochemical performances of button cells with buffer layers of only 200 nm in thickness, and with negligible thickness gradients across them, show current density values of up to 478 mA/cm2 at 0.8 V and 650 °C, with an improvement of more than 67% with respect to button cells with standard (screen printed) buffer layers. These results point out the major influence exerted by parameters such as the thickness gradient and the coverage of the sputtered buffer layers in determining the final electrochemical performances.

9.
ACS Appl Mater Interfaces ; 12(42): 47556-47563, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32985188

ABSTRACT

The study of ionic materials on nanometer scale is of great relevance for efficient miniaturized devices for energy applications. The epitaxial growth of thin films can be a valid route to tune the properties of the materials and thus obtain new degrees of freedom in materials design. High crystal quality SmxCe1-xO2-δ films are here reported at a high doping level up to x = 0.4, thanks to the good lattice matching with the (110) oriented NdGaO3 substrate. X-ray diffraction and transmission electron microscopy demonstrate the ordered structural quality and absence of Sm segregation at the macroscopic and atomic level, respectively. Therefore, in epitaxial thin films, the homogeneous doping can be obtained even with the high dopant content not always approachable in bulk form, getting even an improvement of the structural properties. In situ spectroscopic measurements by X-ray photoemission and X-ray absorption show the O 2p band shift toward the Fermi level, which can favor the oxygen exchange and vacancy formation on the surface when the Sm doping is increased to x = 0.4. X-ray absorption spectroscopy also confirms the absence of ordered oxygen vacancy clusters and further reveals that the 5d eg and t2g states are well separated by the crystal field in the undistorted local structure even in the case of a high doping level up to x = 0.4.

10.
Nano Lett ; 20(9): 6444-6451, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32794711

ABSTRACT

Oxygen vacancies are known to play a crucial role in tuning the physical properties and technological applications of titanium dioxide TiO2. Over the last decades, defects in substoichiometric TiO2 have been commonly associated with the formation of TinO2n-x Magnéli phases, which are extended planar defects originating from crystallographic shear planes. By combining advanced transmission electron microscopy techniques, electron energy-loss spectroscopy and atomistic simulations, we reach new understanding of the oxygen vacancy induced structural modulations in anatase, ruling out the earlier shear-plane model. Structural modulations are instead shown to be due to the formation of oxygen vacancy superstructures that extend periodically inside the films, preserving the crystalline order of anatase. Elucidating the structure of oxygen defects in anatase is a crucial step for improving the functionalities of such material system and to engineer devices with targeted properties.

11.
Sci Data ; 6(1): 3, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30723195

ABSTRACT

Following further analysis of the Majority Dataset (Data Citation 3, originally https://doi.org/10.23728/b2share.e344a8afef08463a855ada08aadbf352 ) and 100% Dataset (Data Citation 4, originally https://doi.org/10.23728/b2share.f1aa0f5ad38c456eaf7b04d47a65af53 ) presented in the original version of this Data Descriptor it was revealed that a large number of duplicate images were included in both datasets. Both datasets have been corrected in updated versions, removing all replicates. The new version of the Majority Dataset (Data Citation 3) can be accessed via https://doi.org/10.23728/b2share.72758204db9044ab8b3e6b6c4d2eb576 and the 100% Dataset (Data Citation 4) via https://doi.org/10.23728/b2share.80df8606fcdb4b2bae1656f0dc6db8ba . The HTML and PDF versions of the Data Descriptor have been corrected accordingly.

12.
Int J Oral Maxillofac Implants ; 34(3): 631­641, 2019.
Article in English | MEDLINE | ID: mdl-30521655

ABSTRACT

PURPOSE: The aim of this work was to prove the synergic complementarity of attenuated total reflection Fourier transform infrared microspectroscopy (micro-ATR FTIR), scanning electron microscopy (SEM) coupled with energy-dispersive x-ray spectroscopy (EDS) and x-ray computed microtomography (micro-CT) by studying implant samples with bone affected by peri-implantitis. MATERIALS AND METHODS: Six samples of implanted bone affected by peri-implantitis and one control healthy bone were analyzed. Thick bone sections included in epoxy-resin and removed implants were analyzed by micro-ATR FTIR, SEM-EDS, and micro-CT. RESULTS: Micro-ATR FTIR revealed the complex nature of the bone composition. Vibrational bands characteristic of both mineral bone phase (acidic phosphates, CO32- groups) and organic bone phase (mostly collagen) could be recognized, and their proportion could be seen to change accordingly with the bone degradation. Similarly, SEM-EDS clearly revealed the cortical nature of the control mandible and its homogenous mineral composition. On the contrary, EDS analyses performed over relevant portions of pathologic samples revealed that defective areas were almost Ca and P free. Micro-CT data showed that the morphology of the interface was smooth and linear in the physiologic periimplant bone, while in the pathologic samples, an altered morphology was evident. CONCLUSION: This study demonstrated that morphologic, elemental, and biochemical modifications of periimplant bone can be studied using micro-ATR FTIR, SEM-EDS, and micro-CT. The complement of these techniques can be considered a new multipurpose approach to investigate bone affected by peri-implantitis.


Subject(s)
Peri-Implantitis , Ataxia Telangiectasia Mutated Proteins , Humans , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , X-Ray Microtomography
13.
Sci Data ; 5: 180172, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30152811

ABSTRACT

In this paper, we present the first publicly available human-annotated dataset of images obtained by the Scanning Electron Microscopy (SEM). A total of roughly 26,000 SEM images at the nanoscale are classified into 10 categories to form 4 labeled training sets, suited for image recognition tasks. The selected categories span the range of 0D objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces as well as patterned surfaces, and 3D structures such as microelectromechanical system (MEMS) devices and pillars. Additional categories such as tips and biological are also included to expand the spectrum of possible images. A preliminary degree of hierarchy is introduced, by creating a subtree structure for the categories and populating them with the available images, wherever possible.

14.
Int J Nanomedicine ; 13: 2093-2106, 2018.
Article in English | MEDLINE | ID: mdl-29713161

ABSTRACT

BACKGROUND: The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. METHODS: In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)-multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40-100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. RESULTS: The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. CONCLUSION: The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications.


Subject(s)
Biosensing Techniques/instrumentation , Dielectric Spectroscopy/instrumentation , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Biosensing Techniques/methods , Dielectric Spectroscopy/methods , Diffusion , Electrodes , Ferrocyanides/chemistry , Gold/chemistry , Microscopy, Electron, Transmission
15.
Nanoscale ; 10(3): 1326-1336, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29296985

ABSTRACT

Here we report a giant, completely reversible magneto-electric coupling of 100 nm polycrystalline Co layer in contact with ZnO nanorods. When the sample is under an applied bias of ±2 V, the Co magnetic coercivity is reduced by a factor 5 from the un-poled case, with additionally a reduction of total magnetic moment in Co. Taking into account the chemical properties of ZnO nanorods measured by X-rays absorption near edge spectroscopy under bias, we conclude that these macroscopic effects on the magnetic response of the Co layer are due to the microstructure and the strong strain-driven magneto-electric coupling induced by the ZnO nanorods, whose nanostructuration maximizes the piezoelectric response under bias.

16.
Phys Chem Chem Phys ; 19(47): 32079-32085, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29182175

ABSTRACT

Well-defined sized (5-10 nm) metallic iron nanoparticles (NPs) with body-centered cubic structure encapsulated inside the tip of millimeter-long vertically aligned carbon nanotubes (VACNTs) of uniform length have been investigated with high-resolution transmission electron microscopy and soft X-ray spectroscopy techniques. Surface-sensitive and chemically-selective measurements have been used to evaluate the magnetic properties of the encapsulated NPs. The encapsulated Fe NPs display magnetic remanence up to room temperature, low coercivity, high chemical stability and no significant anisotropy. Our surface-sensitive measurements combined with the specific morphology of the studied VACNTs allow us to pinpoint the contribution of the surface oxidized or hydroxidized iron catalysts present at the VACNT-substrate interface.

17.
Sci Rep ; 7(1): 13282, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038550

ABSTRACT

In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.

18.
ACS Appl Mater Interfaces ; 9(27): 23099-23106, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28613812

ABSTRACT

We report the study of anatase TiO2(001)-oriented thin films grown by pulsed laser deposition on LaAlO3(001). A combination of in situ and ex situ methods has been used to address both the origin of the Ti3+-localized states and their relationship with the structural and electronic properties on the surface and the subsurface. Localized in-gap states are analyzed using resonant X-ray photoelectron spectroscopy and are related to the Ti3+ electronic configuration, homogeneously distributed over the entire film thickness. We find that an increase in the oxygen pressure corresponds to an increase in Ti3+ only in a well-defined range of deposition pressure; outside this range, Ti3+ and the strength of the in-gap states are reduced.

19.
Sci Rep ; 6: 20712, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26860471

ABSTRACT

An iron-molybdenum alloy powder was extensively deformed by high energy milling, so to refine the bcc iron domain size to nanometer scale (~10 nm) and introduce a strong inhomogeneous strain. Both features contribute to comparable degree to the diffraction peak profile broadening, so that size and strain contributions can be easily separated by exploiting their different dependence on the diffraction angle. To assess the reliability of Line Profile Analysis, results were compared with evidence from other techniques, including scanning and transmission electron microscopy and X-ray small angle scattering. Results confirm the extent of the size broadening effect, whereas molecular dynamics simulations provide insight into the origin of the local atomic, inhomogeneous strain, pointing out the role of dislocations, domain boundaries and interactions among crystalline domains.

20.
Nanoscale ; 4(1): 91-4, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22024736

ABSTRACT

TiO(2) anatase thin films grown by pulsed laser deposition are investigated by high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy. The analyses provide evidence of a peculiar growth mode of anatase on LaAlO(3) and SrTiO(3) characterized by the formation of an epitaxial layer at the film/substrate interface, due to cationic diffusion from the substrate into the film region. Pure TiO(2) anatase growth occurs in both specimens above a critical thickness of about 20 nm. The microstructural and chemical characterization of the samples is presented and discussed in the framework of oxide interface engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...