Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38874306

ABSTRACT

With more than 150 recognized breeds, donkeys assume relevant economic importance, especially in developing countries. Even if the estimated number of heads worldwide is 53M, this species received less attention than other livestock species. Italy has traditionally been considered one of the cradles of European donkey breeding, and despite a considerable loss of biodiversity, today still counts nine autochthonous populations. A total of 220 animals belonging to nine different populations were genotyped using the double-digest restriction site associated DNA (ddRAD) sequencing to investigate the pattern of diversity using a multi-technique approach. A total of 418,602,730 reads were generated and successfully demultiplexed to obtain a medium-density SNP genotypes panel with about 27K markers. The diversity indices showed moderate levels of variability. The genetic distances and relationships, largely agree with the breeding history of the donkey populations under investigation. The results highlighted the separation of populations based on their genetic origin or geographical proximity between breeding areas, showed low to moderate levels of admixture, and indicated a clear genetic difference in some cases. For some breeds, the results also validate the success of proper management conservation plans. Identified runs of homozygosity islands, mapped within genomic regions related to immune response and local adaptation, are consistent with the characteristics of the species known for its rusticity and adaptability. This study is the first exhaustive genome-wide analysis of the diversity of Italian donkey populations. The results emphasized the high informativeness of genome-wide markers retrieved through the ddRAD approach. The findings take on great significance in designing and implementing conservation strategies. Standardized genotype arrays for donkey species would make it possible to combine worldwide datasets to provide further insights into the evolution of the genomic structure and origin of this important genetic resource.


Donkeys assume relevant economic importance in several countries worldwide. However, the genetic structure of these populations is less investigated compared to other species. The aim of this study was to investigate the genetic background of nine different Italian donkey populations. A total of 220 animals were genotyped with about 27K markers extracted by the double-digest restriction site associated DNA sequencing. The consistency of the results across different approaches agreed with the demographic history, the origin, and previous results on the nine donkey populations, suggesting that our conclusions are robust. Moreover, the results of the present study highlighted low to moderate levels of admixture and, for some breeds, confirmed the success of proper management conservation plans.


Subject(s)
Equidae , Polymorphism, Single Nucleotide , Animals , Equidae/genetics , Italy , Genetic Variation , Genotype , Breeding , Genome , Sequence Analysis, DNA , Genomics
2.
Front Vet Sci ; 11: 1339321, 2024.
Article in English | MEDLINE | ID: mdl-38487707

ABSTRACT

Introduction: The development of reproducible tools for the rapid genotyping of thousands of genetic markers (SNPs) has promoted cross border collaboration in the study of sheep genetic diversity on a global scale. Methods: In this study, we collected a comprehensive dataset of 239 African and Eurasian sheep breeds genotyped at 37,638 filtered SNP markers, with the aim of understanding the genetic structure of 22 North African (NA) sheep breeds within a global context. Results and discussion: We revealed asubstantial enrichment of the gene pool between the north and south shores of the Mediterranean Sea, which corroborates the importance of the maritime route in the history of livestock. The genetic structure of North African breeds mirrors the differential composition of genetic backgrounds following the breed history. Indeed, Maghrebin sheep stocks constitute a geographically and historically coherent unit with any breed-level genetic distinctness among them due to considerable gene flow. We detected a broad east-west pattern describing the most important trend in NA fat-tailed populations, exhibited by the genetic closeness of Egyptian and Libyan fat-tailed sheep to Middle Eastern breeds rather than Maghrebin ones. A Bayesian FST scan analysis revealed a set of genes with potentially key adaptive roles in lipid metabolism (BMP2, PDGFD VEGFA, TBX15, and WARS2), coat pigmentation (SOX10, PICK1, PDGFRA, MC1R, and MTIF) and horn morphology RXFP2) in Tunisian sheep. The local ancestry method detected a Merino signature in Tunisian Noire de Thibar sheep near the SULF1gene introgressed by Merino's European breeds. This study will contribute to the general picture of worldwide sheep genetic diversity.

3.
Animals (Basel) ; 13(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37508148

ABSTRACT

Gentile di Puglia (GdP) is an autochthonous sheep breed of Southern Italy included among ovine breeds threatened by genetic erosion and extinction risk, which have been given attention by local and international institutions, thus emphasizing the need for germplasm conservation actions. In the present study, two assisted reproduction approaches, finalized for GdP conservation, were performed: (1) on-farm reproductive efficiency evaluation, expressed as pregnancy rate (PR), twin pregnancy rate (tPR), and body condition score (BCS), for three consecutive breeding cycles and (2) pre-pubertal lambs' immature cumulus-oocyte complex (COC) retrieval, vitrification, in vitro maturation (IVM), and assessment of meiotic stage and bioenergetic-oxidative status compared with those of other Italian and European commercial breeds. PR and tPR were progressively reduced over time. In all clinical examination times, BCS was significantly lower in nonpregnant ewes compared with pregnant ones. Fresh GdP pre-pubertal lamb COCs achieved meiotic maturation and showed healthy bioenergetic-oxidative status after IVM. Vitrification reduced the oocyte maturation rate in all groups. However, mature oocytes retained their cytoplasmic maturity, expressed as a mitochondria distribution pattern and activity, indicating promising developmental competence. In conclusion, clinical- and biotechnological-assisted reproduction approaches can support conservation strategies of GdP and other local sheep breeds in Southern Italy.

4.
Genet Sel Evol ; 55(1): 24, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013467

ABSTRACT

BACKGROUND: To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS: The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS: To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes.


Subject(s)
Genetic Variation , Sheep, Domestic , Sheep/genetics , Animals , Sheep, Domestic/genetics , Phylogeny , Australia , Genotype , Polymorphism, Single Nucleotide
5.
Biology (Basel) ; 12(4)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37106807

ABSTRACT

Given energy costs for gestating and caring for male offspring are higher than those of female newborns, external environmental conditions might be regarded as likely to affect the timing of delivery processes differentially depending on the sex of the newborn calf to be delivered. The aim of the present paper is to evaluate the association between environmental stressors such as the moon phase and weather-related factors and the onset of labor in female dromedaries. A binary logistic regression model was developed to find the most parsimonious set of variables that are most effective in predicting the probability for a gravid female dromedary to give birth to a male or a female calf, assuming that higher gestational costs and longer labor times are ascribed to the production of a male offspring. Although the differences in the quantitative distribution of spontaneous onset of labor across lunar phases and the mean climate per onset event along the whole study period were deemed nonsignificant (p > 0.05), a non-negligible prediction effect of a new moon, mean wind speed and maximum wind gust was present. At slightly brighter nights and lower mean wind speeds, a calf is more likely to be male. This microevolutionary response to the external environment may have been driven by physiological and behavioral adaptation of metabolic economy and social ecology to give birth to cooperative groups with the best possible reduction of thermoregulatory demands. Model performance indexes then highlighted the heterothermic character of camels to greatly minimize the impact of the external environment. The overall results will also enrich the general knowledge of the interplay between homeostasis and arid and semi-arid environments.

6.
Biology (Basel) ; 12(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36829526

ABSTRACT

Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.

7.
Anim Genet ; 54(1): 78-81, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36321295

ABSTRACT

Mycobacterium avium ssp. paratuberculosis (MAP), causes Johne's disease (JD), or paratuberculosis, a chronic enteritis of ruminants, which in goats is characterized by ileal lesions. The work described here is a case-control association study using the Illumina Caprine SNP50 BeadChip to unravel the genes involved in susceptibility of goats to JD. Goats in herds with a high occurrence of Johne's disease were classified as healthy or infected based on the level of serum antibodies against MAP, and 331 animals were selected for the association study. Goats belonged to the Jonica (157) and Siriana breeds (174). Whole-genome association analysis identified one region suggestive of significance associated with an antibody response to MAP on chromosome 7 (p-value = 1.23 × 10-5 ). These results provide evidence for genetic loci involved in the antibody response to MAP in goats.


Subject(s)
Cattle Diseases , Goat Diseases , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animals , Cattle , Paratuberculosis/genetics , Paratuberculosis/epidemiology , Paratuberculosis/microbiology , Goats/genetics , Genome-Wide Association Study/veterinary , Mycobacterium avium/genetics , Antibody Formation/genetics , Mycobacterium avium subsp. paratuberculosis/genetics , Enzyme-Linked Immunosorbent Assay/veterinary , Cattle Diseases/genetics , Goat Diseases/genetics
8.
Front Vet Sci ; 10: 1297430, 2023.
Article in English | MEDLINE | ID: mdl-38292133

ABSTRACT

To date, the biomechanical dynamics in camelids have not been addressed, although it might be a factor that can affect selection and breeding in this species. Therefore, the aim of this article is to conduct curve fitting and discriminant canonical analysis to identify the mathematical function that best captures the dynamics of camel locomotion and to study the impact of kinematic, morphometric, physiological, and phaneroptic variables on gait performance in leisure riding and racing activities in dromedaries, respectively. The cubic function emerged as the most suitable mathematical model to represent the locomotive behavior of camels. Various factors were found to play a pivotal role in the athletic performance of leisure riding and racing dromedary camels. Concretely, angular measurements at the distal fore and rear extremity areas, pelvis inclination, relative volume of the hump, impact forces of the front limbs, post-neutering effects, and the kinematic behavior of the scapula, shoulder, carpus, hip, and foot are the factors that greatly impact gait performance in leisure riding and racing camels. The biomechanical performance at these specific body regions has a profound impact on weight absorption and minimization of mechanic impact during camel locomotion, static/dynamic balance, force distribution, energy of propulsion, movement direction and amplitude, and storage of elastic strain in leisure riding and racing dromedaries. In contrast, other animal- and environment-dependent factors do not exert significant influence on camel gait performance, which can be attributed to species-specific, inherited adaptations developed in response to desert conditions, including the pacing gait, broad foot pads, and energy-efficient movements. The outcomes of our functional data analysis can provide valuable insights for making informed breeding decisions aimed at enhancing animal functional performance in camel riding and racing activities. Furthermore, these findings can open avenues for exploring alternative applications, such as camel-assisted therapy.

9.
Front Vet Sci ; 10: 1297412, 2023.
Article in English | MEDLINE | ID: mdl-38173554

ABSTRACT

Despite the relatively wide knowledge of camel biomechanics, research into the immediate functional response that accompanies the execution of physical exercise remains unapproached. Therefore, selective breeding programs lack an empirical basis to achieve genetic improvement of physical stress tolerance traits and monitor camel welfare in this regard. Given the fact that physical exercise increases net heat production, infrared thermography (IRT) was selected to study the temperature changes at the skin surface of the different body areas in clinically normal dromedary camels, mostly relegated to leisure activities. Specifically, a lower dispersion at the individual level of the surface temperature at the scapular cartilage region, shoulder joint, and pelvis region, as well as lower values for Tmax and Tmin at the region of the ocular region, pectoral muscles, semimembranosus-semitendinosus muscles, and hind fetlock after exercise, have to be considered as breeding criteria for candidate selection. Such thermophysiological responses can be used as indirect measures of tissue activity in response to exercise and hence are reliable indicators of animal tolerance to physical exercise-induced stress. Additionally, sex, castration, age, and iris pigmentation significantly impacted the thermo-physiological response to exercise in the study sample, which can be attributed to hormones, general vigor, and visual acuity-mediated effects. These specific factors' influence has to be considered for the evaluation of physical performance and the design of selection schemes for physical-related traits in dromedaries.

10.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499353

ABSTRACT

Up to the present day, studies on the therapeutic properties of camel (Camelus spp.) urine and the detailed characterization of its metabolomic profile are scarce and often unrelated. Information on inter individual variability is noticeably limited, and there is a wide divergence across studies regarding the methods for sample storage, pre-processing, and extract derivatization for metabolomic analysis. Additionally, medium osmolarity is not experimentally adjusted prior to bioactivity assays. In this scenario, the methodological standardization and interdisciplinary approach of such processes will strengthen the interpretation, repeatability, and replicability of the empirical results on the compounds with bioactive properties present in camel urine. Furthermore, sample enlargement would also permit the evaluation of camel urine's intra- and interindividual variability in terms of chemical composition, bioactive effects, and efficacy, while it may also permit researchers to discriminate potential animal-intrinsic and extrinsic conditioning factors. Altogether, the results would help to evaluate the role of camel urine as a natural source for the identification and extraction of specific novel bioactive substances that may deserve isolated chemical and pharmacognostic investigations through preclinical tests to determine their biological activity and the suitability of their safety profile for their potential inclusion in therapeutic formulas for improving human and animal health.


Subject(s)
Body Fluids , Camelus , Animals , Humans
11.
Genes (Basel) ; 13(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36140768

ABSTRACT

Shades of grey and brown are a dominant component in mammal coat colours, representing a fundamental trait involved in a great number of processes including cryptism, sexual selection and signalling. The genetic mechanisms of the grey colouration in mammals are very complex and controlled by hundreds of genes whose effects and interactions are still largely unclear. In this study, we adopted a robust multi-cohort Fst outlier approach based on pairwise contrasts between seven grey indicine cattle breeds and both taurine and indicine non-grey cattle breeds in order to find genomic regions potentially related to the grey colouration. On the basis of three main drawn settings, built in order to control both the effect of the sample size and the genetic structure, we have identified some signals common to those obtained in a previous work employing only taurine cattle. In particular, using the top 1% Fst approach, we detected a candidate region (22.6-23.8 megabases) on chromosome 14 in which genes related to pigmentation have been already documented. In addition, when we constructed a phylogenetic tree using the significant markers identified in this study and including also the genotyping data at these loci of both the grey taurine and the extinct wild auroch, we found a topological repartition consistent with breed colour pattern rather than with the known bovine evolutionary history. Thus, on the basis of this evidence, together with the geographical distribution of the current taurine grey cattle, an ancestral indicine origin for the grey phenotype would seem to be a conceivable interpretation. In this context, a higher thermo-tolerance and less UV-induced damage of the grey phenotype might have favoured the retention of advantageous genes into the taurine genome during the post-Neolithic human-mediated cattle expansions.


Subject(s)
Cattle , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Animal Fur , Color , Follow-Up Studies , Phylogeny
12.
Front Genet ; 13: 940736, 2022.
Article in English | MEDLINE | ID: mdl-35910220

ABSTRACT

A recent comprehensive genomic analysis based on 50K SNP profiles has shown that the regional Balkan sheep populations have considerable genetic overlap but are distinctly different from surrounding breeds. All eight Croatian sheep breeds were represented by a small number of individuals per breed. Here, we genotyped 220 individuals representing the native Croatian sheep breeds (Istrian Sheep, Krk Island Sheep, Cres Island Sheep, Rab Island Sheep, Lika Pramenka, Pag Island Sheep, Dalmatian Pramenka, Dubrovnik Sheep) and mouflon using the Ovine Infinium® HD SNP BeadChip (606,006 SNPs). In addition, we included publicly available Balkan Pramenka and other Mediterranean sheep breeds. Our analyses revealed the complex population structure of Croatian sheep breeds and their origin and geographic barriers (island versus mainland). Migration patterns confirmed the historical establishment of breeds and the pathways of gene flow. Inbreeding coefficients (FROH>2 Mb) between sheep populations ranged from 0.025 to 0.070, with lower inbreeding coefficients observed in Dalmatian Pramenka and Pag Island Sheep and higher inbreeding in Dubrovnik sheep. The estimated effective population size ranged from 61 to 1039 for Krk Island Sheep and Dalmatian Pramenka, respectively. Higher inbreeding levels and lower effective population size indicate the need for improved conservation management to maintain genetic diversity in some breeds. Our results will contribute to breeding and conservation strategies of native Croatian sheep breeds.

14.
Animals (Basel) ; 12(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36009658

ABSTRACT

Myostatin (MSTN) is a highly conserved negative regulator of skeletal muscle in mammals. Inactivating mutations results in a hyper-muscularity phenotype known as "double muscling" in several livestock and model species. In Camelus dromedarius, the gene structure organization and the sequence polymorphisms have been previously investigated, using Sanger and Next-Generation Sequencing technologies on a limited number of animals. Here, we carried out a follow-up study with the aim to further expand our knowledge about the sequence polymorphisms at the myostatin locus, through the whole-genome sequencing data of 183 samples representative of the geographical distribution range for this species. We focused our polymorphism analysis on the ±5 kb upstream and downstream region of the MSTN gene. A total of 99 variants (77 Single Nucleotide Polymorphisms and 22 indels) were observed. These were mainly located in intergenic and intronic regions, with only six synonymous Single Nucleotide Polymorphisms in exons. A sequence comparative analysis among the three species within the Camelus genus confirmed the expected higher genetic distance of C. dromedarius from the wild and domestic two-humped camels compared to the genetic distance between C. bactrianus and C. ferus. In silico functional prediction highlighted: (i) 213 differential putative transcription factor-binding sites, out of which 41 relative to transcription factors, with known literature evidence supporting their involvement in muscle metabolism and/or muscle development; and (ii) a number of variants potentially disrupting the canonical MSTN splicing elements, out of which two are discussed here for their potential ability to generate a prematurely truncated (inactive) form of the protein. The distribution of the considered variants in the studied cohort is discussed in light of the peculiar evolutionary history of this species and the hypothesis that extremely high muscularity, associated with a homozygous condition for mutated (inactivating) alleles at the myostatin locus, may represent, in arid desert conditions, a clear metabolic disadvantage, emphasizing the thermoregulatory and water availability challenges typical of these habitats.

15.
Genes (Basel) ; 13(8)2022 08 09.
Article in English | MEDLINE | ID: mdl-36011325

ABSTRACT

Creole sheep represent a strategic genetic resource for populations living in marginal areas under financial restrictions on the American continent. Six Colombian sheep breeds (two wool (BCL-Boyacá and NCL-Nariño, 12 and 14 samples) and four hair (OPCE-Ethiopian, 54 samples; OPCS-Sudan, 74 samples; OPCP-Pelibeuy, 59 samples; OPCW-Wayúu, 24 samples) were genotyped using the Illumina Ovine SNP50 BeadChip. Data was also included from international 44 breeds from International Sheep Genomics Consortium (ISGC) and from data published in previous a previous work on the Caribbean and African breeds. Although geographically separated, wool (NCL, BCL) and hair types (OPCE, OPCS, OPCW) presented little genetic differentiation (FST 0.05) at a global level but several groups of animals separated suggesting local clustering due to geographical isolation. The OPCP underwent a recent crossing with Mexican Pelibuey, explaining its differentiation. Findings in this work such as the proximity to West African Djallonké (WAD) and Barbados Black Belly (BBB), suggest different introductions of African type animals from the Caribbean region on a pre-existing genetic basis formed by animals deriving from the first importations coming from Europe in colonial times. As expected, Colombian wool breeds showed, in particular in Admixture software results, a greater genomic component in common with European breeds and in particular with Iberian ones (Churra). This study provides a basis for future research into the genetic diversity within and between the Colombian sheep breeds analysed, and scientific data for policy decisions on Farm Animal Genetic Resources (FAnGR).


Subject(s)
Genome , Wool , Animals , Colombia , Genetic Drift , Genotype , Sheep/genetics , United States
16.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162971

ABSTRACT

H+/K+ ATPase Type 2 is an heteromeric membrane protein involved in cation transmembrane transport and consists of two subunits: a specific α subunit (ATP12A) and a non-specific ß subunit. The aim of this study was to demonstrate the presence and establish the localization of ATP12A in spermatozoa from Bubalus bubalis, Bos taurus and Ovis aries. Immunoblotting revealed, in all three species, a major band (100 kDa) corresponding to the expected molecular mass. The ATP12A immunolocalization pattern showed, consistently in the three species, a strong signal at the acrosome. These results, described here for the first time in spermatozoa, are consistent with those observed for the ß1 subunit of Na+/K+ ATPase, suggesting that the latter may assemble with the α subunit to produce a functional ATP12A dimer in sperm cells. The above scenario appeared to be nicely supported by 3D comparative modeling and interaction energy calculations. The expression of ATP12A during different stages of bovine sperm maturation progressively increased, moving from epididymis to deferent ducts. Based on overall results, we hypothesize that ATP12A may play a role in acrosome reactions. Further studies will be required in order to address the functional role of this target protein in sperm physiology.


Subject(s)
H(+)-K(+)-Exchanging ATPase , Spermatozoa , Animals , Buffaloes/metabolism , Cattle , H(+)-K(+)-Exchanging ATPase/metabolism , Ion Transport , Male , Sodium-Potassium-Exchanging ATPase/metabolism , Spermatozoa/metabolism
17.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-34893856

ABSTRACT

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Subject(s)
Genome , Sheep, Domestic , Animals , Asia , Europe , Genetic Variation , Iran , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sheep/genetics , Sheep, Domestic/genetics
18.
Genet Sel Evol ; 53(1): 92, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34895134

ABSTRACT

BACKGROUND: Climate and farming systems, several of which are considered as low-input agricultural systems, vary between goat populations from Northern and Southern Italy and have led to different management practices. These processes have impacted genome shaping in terms of inbreeding and regions under selection and resulted in differences between the northern and southern populations. Both inbreeding and signatures of selection can be pinpointed by the analysis of runs of homozygosity (ROH), which provides useful information to assist the management of this species in different rural areas. RESULTS: We analyzed the ROH distribution and inbreeding (FROH) in 902 goats from the Italian Goat Consortium2 dataset. We evaluated the differences in individual ROH number and length between goat breeds from Northern (NRD) and Central-southern (CSD) Italy. Then, we identified the signatures of selection that differentiate these two groups using three methods: ROH, ΔROH, and averaged FST. ROH analyses showed that some Italian goat breeds have a lower inbreeding coefficient, which is attributable to their management and history. ROH are longer in breeds that are undergoing non-optimal management or with small population size. In several small breeds, the ROH length classes are balanced, reflecting more accurate mating planning. The differences in climate and management between the NRD and CSD groups have resulted in different ROH lengths and numbers: the NRD populations bred in isolated valleys present more and shorter ROH segments, while the CSD populations have fewer and longer ROH, which is likely due to the fact that they have undergone more admixture events during the horizontal transhumance practice followed by a more recent standardization. We identified four genes within signatures of selection on chromosome 11 related to fertility in the NRD group, and 23 genes on chromosomes 5 and 6 related to growth in the CSD group. Finally, we identified 17 genes on chromosome 12 related to environmental adaptation and body size with high homozygosity in both groups. CONCLUSIONS: These results show how different management practices have impacted the level of genomic inbreeding in two Italian goat groups and could be useful to assist management in a low-input system while safeguarding the diversity of small populations.


Subject(s)
Goats , Polymorphism, Single Nucleotide , Animals , Genome , Goats/genetics , Homozygote , Inbreeding
19.
Sci Rep ; 11(1): 21363, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725398

ABSTRACT

Small ruminants are suited to a wide variety of habitats and thus represent promising study models for identifying genes underlying adaptations. Here, we considered local Mediterranean breeds of goats (n = 17) and sheep (n = 25) from Italy, France and Spain. Based on historical archives, we selected the breeds potentially most linked to a territory and defined their original cradle (i.e., the geographical area in which the breed has emerged), including transhumant pastoral areas. We then used the programs PCAdapt and LFMM to identify signatures of artificial and environmental selection. Considering cradles instead of current GPS coordinates resulted in a greater number of signatures identified by the LFMM analysis. The results, combined with a systematic literature review, revealed a set of genes with potentially key adaptive roles in relation to the gradient of aridity and altitude. Some of these genes have been previously implicated in lipid metabolism (SUCLG2, BMP2), hypoxia stress/lung function (BMPR2), seasonal patterns (SOX2, DPH6) or neuronal function (TRPC4, TRPC6). Selection signatures involving the PCDH9 and KLH1 genes, as well as NBEA/NBEAL1, were identified in both species and thus could play an important adaptive role.


Subject(s)
Goats/physiology , Sheep/physiology , Acclimatization , Adaptation, Physiological , Altitude , Animals , Breeding , Ecosystem , France , Italy , Mediterranean Region , Spain
20.
Animals (Basel) ; 11(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34827953

ABSTRACT

In the present study, the evaluation of the carcasses and meat quality, in terms of chemical composition and fatty acid profile, of lambs from five autochthonous sheep breeds (Altamurana, Bagnolese, Gentile di Puglia, Laticauda, and Leccese) reared in continental Southern Italy, were studied. All the carcasses were evaluated according to the EU Mediterranean classification system for carcasses weighing less than 13 kg. Meat chemical composition and fatty acids profile were assessed on both loin and leg commercial cuts. Fatty acid composition of loin resulted in differences among breeds, displaying lower values of saturated fatty acid in Altamurana, Bagnolese, and Leccese breeds and the highest content of polyunsaturated fatty acid in the Altamurana breed. Principal component analysis grouped lamb according to fatty acid content and to conjugated linoleic acid (CLA), omega n-3 and n-6 fatty acids; thus, Altamurana, Bagnolese, and Leccese breeds are characterized by the highest values of CLA content. Our data demonstrated that lamb meat from autochthonous breed has good carcass quality and the content of CLA, n-3, and n-6 was valuable for human consumption; therefore, the valorisation of local meat quality can help to avoid the extinction of the autochthonous breed offering to the market and consumer's high nutritive products.

SELECTION OF CITATIONS
SEARCH DETAIL
...