Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
4.
J Clin Med ; 13(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673507

Mpox, caused by viruses of the genus Orthopoxvirus, is an emerging threat to human and animal health. With increasing urbanization and more frequent interaction between humans and wild animals, the risk of Mpox transmission to humans has increased significantly. This review aims to examine in depth the epidemiology, pathogenesis, and diagnosis of Mpox, with a special focus on recent discoveries and advances in understanding the disease. Molecular mechanisms involved in viral replication will be examined, as well as risk factors associated with interspecific transmission and spread of the disease in human populations. Currently available diagnostic methods will also be discussed, with a critical analysis of their limitations and possible future directions for improving the accuracy and timeliness of diagnosis. Finally, this review will explore the public health implications associated with Mpox, emphasizing the importance of epidemiological surveillance, vaccination, and emergency preparedness to prevent and manage possible outbreaks. Understanding the epidemiology and control strategies for Mpox is critical to protecting the health of human and animal communities and mitigating the risk of interspecific transmission and spread of the disease.

5.
Infect Dis Rep ; 16(2): 367-379, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38667754

Measles, a highly contagious disease primarily affecting children, carries serious health risks, including complications and mortality. Vaccination remains the most effective preventive measure against measles transmission. The COVID-19 pandemic has exacerbated challenges in surveillance and immunization efforts, leaving millions of people exposed to preventable diseases such as measles. Globally accelerated immunization campaigns are critical for achieving regional elimination goals and mitigating the risk of outbreaks. Our team has developed an open-access database for global measles monitoring, facilitating standardized data collection and analysis. The analysis of measles cases from 2011 to 2023 reveals fluctuating trends, with notable increases in Africa in 2019 and 2023, indicating potential gaps in control strategies. Using an automated signal detection tool developed by the European Centre for Disease Prevention and Control (ECDC) team, we identified significant variations between World Health Organization (WHO) regions, underscoring the importance of continuous monitoring to detect epidemiological changes early. These results underscore the need for robust surveillance systems and accelerated vaccination efforts to safeguard public health.

6.
Pathogens ; 13(4)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38668289

The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface proteins of A/H1N1pdm09 strains circulating in Italy over a fourteen-year period from 2009 to 2023 in relation to global strains. Phylogenetic analysis revealed rapid transmission and diversification of viral variants during the early pandemic that clustered in clade 6B.1. In contrast, limited genetic diversity was observed during the 2023 season, probably due to the genetic drift, which provides the virus with a constant adaptability to the host; furthermore, all isolates were split into two main groups representing two clades, i.e., 6B.1A.5a.2a and its descendant 6B.1A.5a.2a.1. The HA gene showed a faster rate of evolution compared to the NA gene. Using FUBAR, we identified positively selected sites 41 and 177 for HA and 248, 286, and 455 for NA in 2009, as well as sites 22, 123, and 513 for HA and 339 for NA in 2023, all of which may be important sites related to the host immune response. Changes in glycosylation acquisition/loss at prominent sites, i.e., 177 in HA and 248 in NA, should be considered as a predictive tool for early warning signs of emerging pandemics, and for vaccine and drug development.

8.
Chemotherapy ; 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38508151

BACKGROUND: Influenza viruses are etiological agents which cause contagious respiratory, seasonal epidemics and, for Influenza A subtypes, pandemics. The clinical picture of Influenza has undergone continuous change over the years, due to intrinsic viral evolution as well as "reassortment" of its genomic segments. The history of Influenza highlights its ability to adapt and to rapidly evolve, without specific circumstances. This reflects the complexity of this pathology and poses the fundamental question about its assumption as a "common illness" and its impact on public health. SUMMARY: The global influenza epidemics and pandemics claimed millions of deaths, leaving an indelible mark on public health, and showing the need for a better comprehension of the influenza virus. The clear understanding of genetic variations during the Influenza seasonal epidemics is a crucial point for developing effective strategies for prevention, treatment, and vaccine design. The recent advance in Next Generation Sequencing approaches, model systems to virus culture and bioinformatics pipeline played a key role in the rapid characterization of circulating Influenza strains. In particular, the increase of computational power allowed to perform complex tasks in healthcare setting through Machine Learning (ML) algorithms, which analyze different variables, such as medical and laboratory outputs, to optimize medical research and to improve public health systems. The early detection of emerging and re-emerging pathogens is of matter importance to prevent next pandemics. KEY MESSAGES: The perception of influenza as a "trivial flu" or a more serious public health concern is a subject of ongoing debate, reflecting the multifaceted nature of this infectious disease. The variability in the severity of influenza shed the light on the unpredictability of the viral characteristics, coupled with the challenges in accurately predicting circulating strains. This adds complexity to the public health burden of Influenza and highlights the need of targeted interventions.

11.
Int J Mol Sci ; 24(17)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37686383

The XBB.1.16 SARS-CoV-2 variant, also known as Arcturus, is a recent descendant lineage of the recombinant XBB (nicknamed Gryphon). Compared to its direct progenitor, XBB.1, XBB.1.16 carries additional spike mutations in key antigenic sites, potentially conferring an ability to evade the immune response compared to other circulating lineages. In this context, we conducted a comprehensive genome-based survey to gain a detailed understanding of the evolution and potential dangers of the XBB.1.16 variant, which became dominant in late June. Genetic data indicates that the XBB.1.16 variant exhibits an evolutionary background with limited diversification, unlike dangerous lineages known for rapid changes. The evolutionary rate of XBB.1.16, which amounts to 3.95 × 10-4 subs/site/year, is slightly slower than that of its direct progenitors, XBB and XBB.1.5, which have been circulating for several months. A Bayesian Skyline Plot reconstruction suggests that the peak of genetic variability was reached in early May 2023, and currently, it is in a plateau phase with a viral population size similar to the levels observed in early March. Structural analyses indicate that, overall, the XBB.1.16 variant does not possess structural characteristics markedly different from those of the parent lineages, and the theoretical affinity for ACE2 does not seem to change among the compared variants. In conclusion, the genetic and structural analyses of SARS-CoV-2 XBB.1.16 do not provide evidence of its exceptional danger or high expansion capability. Detected differences with previous lineages are probably due to genetic drift, which allows the virus constant adaptability to the host, but they are not necessarily connected to a greater danger. Nevertheless, continuous genome-based monitoring is essential for a better understanding of its descendants and other lineages.


COVID-19 , Humans , Bayes Theorem , COVID-19/genetics , SARS-CoV-2/genetics , Genetic Drift
12.
J Med Virol ; 95(9): e29075, 2023 09.
Article En | MEDLINE | ID: mdl-37665162

The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10-4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation.


COVID-19 , Humans , SARS-CoV-2/genetics , Biological Evolution , Genetic Drift , Population Density
13.
Pathogens ; 12(9)2023 Sep 11.
Article En | MEDLINE | ID: mdl-37764961

Monkeypox, a viral zoonotic disease, has emerged as a significant global threat in recent years. This review focuses on the importance of global monitoring and rapid response to monkeypox outbreaks. The unpredictable nature of monkeypox transmissions, its potential for human-to-human spread, and its high morbidity rate underscore the necessity for proactive surveillance systems. By analyzing the existing literature, including recent outbreaks, this review highlights the critical role of global surveillance in detecting, containing, and preventing the further spread of monkeypox. It also emphasizes the need for enhanced international collaboration, data sharing, and real-time information exchange to effectively respond to monkeypox outbreaks as a global health concern. Furthermore, this review discusses the challenges and opportunities of implementing robust surveillance strategies, including the use of advanced diagnostic tools and technologies. Ultimately, these findings underscore the urgency of establishing a comprehensive global monitoring framework for monkeypox, enabling early detection, prompt response, and effective control measures to protect public health worldwide.

14.
Viruses ; 15(8)2023 08 11.
Article En | MEDLINE | ID: mdl-37632063

The COVID-19 pandemic has not only strained healthcare systems in Africa but has also intensified the impact of emerging and re-emerging diseases. Specifically in Equatorial Guinea, mirroring the situation in other African countries, unique zoonotic outbreaks have occurred during this challenging period. One notable resurgence is Marburg virus disease (MVD), which has further burdened the already fragile healthcare system. The re-emergence of the Marburg virus amid the COVID-19 pandemic is believed to stem from a probable zoonotic spill-over, although the precise transmission routes remain uncertain. Given the gravity of the situation, addressing the existing challenges is paramount. Though the genome sequences from the current outbreak were not available for this study, we analyzed all the available whole genome sequences of this re-emerging pathogen to advocate for a shift towards active surveillance. This is essential to ensure the successful containment of any potential Marburg virus outbreak in Equatorial Guinea and the wider African context. This study, which presents an update on the phylodynamics and the genetic variability of MARV, further confirmed the existence of at least two distinct patterns of viral spread. One pattern demonstrates a slower but continuous and recurring virus circulation, while the other exhibits a faster yet limited and episodic spread. These results highlight the critical need to strengthen genomic surveillance in the region to effectively curb the pathogen's dissemination. Moreover, the study emphasizes the importance of prompt alert management, comprehensive case investigation and analysis, contact tracing, and active case searching. These steps are vital to support the healthcare system's response to this emerging health crisis. By implementing these strategies, we can better arm ourselves against the challenges posed by the resurgence of the Marburg virus and other infectious diseases.


Marburg Virus Disease , Marburgvirus , Animals , Humans , Africa/epidemiology , Black People , COVID-19/epidemiology , Marburgvirus/genetics , Pandemics , Marburg Virus Disease/epidemiology , Marburg Virus Disease/genetics , Marburg Virus Disease/virology , Disease Outbreaks , Equatorial Guinea/epidemiology , Viral Zoonoses/epidemiology , Viral Zoonoses/genetics , Viral Zoonoses/virology , Phylogeny
15.
J Med Virol ; 95(8): e29012, 2023 08.
Article En | MEDLINE | ID: mdl-37548148

This comprehensive review focuses on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its impact as the cause of the COVID-19 pandemic. Its objective is to provide a cohesive overview of the epidemic history and evolutionary aspects of the virus, with a particular emphasis on its emergence, global spread, and implications for public health. The review delves into the timelines and key milestones of SARS-CoV-2's epidemiological progression, shedding light on the challenges encountered during early containment efforts and subsequent waves of transmission. Understanding the evolutionary dynamics of the virus is crucial in monitoring its potential for adaptation and future outbreaks. Genetic characterization of SARS-CoV-2 is discussed, with a focus on the emergence of new variants and their implications for transmissibility, severity, and immune evasion. The review highlights the important role of genomic surveillance in tracking viral mutations linked to establishing public health interventions. By analyzing the origins, global spread, and genetic evolution of SARS-CoV-2, valuable insights can be gained for the development of effective control measures, improvement of pandemic preparedness, and addressing future emerging infectious diseases of international concern.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics/prevention & control , Public Health , Disease Outbreaks
16.
Microorganisms ; 11(7)2023 Jul 17.
Article En | MEDLINE | ID: mdl-37512996

Recombination events are very common and represent one of the primary drivers of RNA virus evolution. The XBF SARS-CoV-2 lineage is one of the most recently generated recombinants during the COVID-19 pandemic. It is a recombinant of BA.5.2.3 and BA.2.75.3, both descendants of lineages that caused many concerns (BA.5 and BA.2.75, respectively). Here, we performed a genomic survey focused on comparing the recombinant XBF with its parental lineages to provide a comprehensive assessment of the evolutionary potential, epidemiological trajectory, and potential risks. Genetic analyses indicated that although XBF initially showed the typical expansion depicted by a steep curve, causing several concerns, currently there is no indication of significant expansion potential or a contagion rate surpassing that of other currently active or previously prevalent lineages. BSP indicated that the peak has been reached around 19 October 2022 and then the genetic variability suffered slight oscillations until early 5 March 2023 when the population size reduced for the last time starting its last plateau that is still lasting. Structural analyses confirmed its reduced potential, also indicating that properties of NTDs and RBDs of XBF and its parental lineages present no significant difference. Of course, cautionary measures must still be taken and genome-based monitoring remains the best tool for detecting any important changes in viral genome composition.

17.
Infect Dis Rep ; 15(3): 307-318, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37367190

Bats are well-known to be natural reservoirs of various zoonotic coronaviruses, which have caused outbreaks of severe acute respiratory syndrome (SARS) and the COVID-19 pandemic in 2002 and 2019, respectively. In late 2020, two new Sarbecoviruses were found in Russia, isolated in Rhinolophus bats, i.e., Khosta-1 in R. ferrumequinum and Khosta-2 in R. hipposideros. The potential danger associated with these new species of Sarbecovirus is that Khosta-2 has been found to interact with the same entry receptor as SARS-CoV-2. Our multidisciplinary approach in this study demonstrates that Khosta-1 and -2 currently appear to be not dangerous with low risk of spillover, as confirmed by prevalence data and by phylogenomic reconstruction. In addition, the interaction between Khosta-1 and -2 with ACE2 appears weak, and furin cleavage sites are absent. While the possibility of a spillover event cannot be entirely excluded, it is currently highly unlikely. This research further emphasizes the importance of assessing the zoonotic potential of widely distributed batborne CoV in order to monitor changes in genomic composition of viruses and prevent spillover events (if any).

18.
Microorganisms ; 11(4)2023 Mar 31.
Article En | MEDLINE | ID: mdl-37110335

Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10-4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant.

19.
J Med Virol ; 95(4): e28714, 2023 04.
Article En | MEDLINE | ID: mdl-37000592

The SARS-CoV-2 BF.7 variant represents one of the most recent subvariant under monitoring. At the beginning of the 2023 it caused several concerns especially in Asia because of a resurge in COVID-19 cases. Here we perform a genome-based integrative approach on SARS-CoV-2 BF.7 to shed light on this emerging lineage and produce some consideration on its real dangerousness. Both genetic and structural data suggest that this new variant currently does not show evidence of an high expansion capability. It is very common in Asia, but it appears less virulent than other Omicron variants as proved by its relatively low evolutionary rate (5.62 × 10-4 subs/sites/years). The last plateau has been reached around December 14, 2022 and then the genetic variability, and thus the viral population size, no longer increased. As already seen for several previous variants, the features that may be theoretically related to advantages are due to genetic drift that allows to the virus a constant adaptability to the host, but is not strictly connected to a fitness advantage. These results have further pointed that the genome-based monitoring must continue uninterruptedly to be prepared and well documented on the real situation.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Asia/epidemiology , Biological Evolution
20.
Front Psychol ; 13: 895954, 2022.
Article En | MEDLINE | ID: mdl-36506986

Objectives: This study assesses the psychopathological distress experienced by doctors working in an Intensive care unit (ICU) during the COVID-19 pandemic. These doctors were the same who faced the consequences of a previous natural disaster, a severe 6.3 magnitude earthquake. A second objective is to evaluate their current mental attitude, professional performances and coping strategies adopted in the pandemic in relation to the conditioning effect of that first emergency, the earthquake. Methods: Thirty-seven ICU medical doctors were recruited and assessed using Rapid Stress Assessment (RSA) rating scale, Symptom Checklist-90 Revised (SCL-90-R), Zung Self-Rating Anxiety Scale, Beck Depression Inventory, Beck Hopelessness Scale, Millon Clinical Multiaxial Inventory III. Comparison between exposure to the earthquake and COVID pandemic has been made in terms of professional role and psychological burden. Results: Comparison between 2009 earthquake catastrophe and COVID pandemic conditions evidenced relevant changes in professional role, team, environment, shifts, and work organization. Conclusion: The doctors, who already experienced the 2009 earthquake reported a feeling of greater insecurity facing this latter catastrophe, the COVID pandemic, as well as perception of greater concern for their family and the global situation. However, having participated in the medical management of another emergency (the 2009 earthquake) appears to have contributed to limiting demoralization and psychological distress. The feeling of having greater decision-making possibilities and participation in the organization of work, strengthen coping skills in the face of the emergency.

...