Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Article in English | MEDLINE | ID: mdl-39352826

ABSTRACT

Motor imagery, one of the main brain-computer interface (BCI) paradigms, has been extensively utilized in numerous BCI applications, such as the interaction between disabled people and external devices. Precise decoding, one of the most significant aspects of realizing efficient and stable interaction, has received a great deal of intensive research. However, the current decoding methods based on deep learning are still dominated by single-scale serial convolution, which leads to insufficient extraction of abundant information from motor imagery signals. To overcome such challenges, we propose a new end-to-end convolutional neural network based on multiscale spatial-temporal feature fusion (MSTFNet) for EEG classification of motor imagery. The architecture of MSTFNet consists of four distinct modules: feature enhancement module, multiscale temporal feature extraction module, spatial feature extraction module and feature fusion module, with the latter being further divided into the depthwise separable convolution block and efficient channel attention block. Moreover, we implement a straightforward yet potent data augmentation strategy to bolster the performance of MSTFNet significantly. To validate the performance of MSTFNet, we conduct cross-session experiments and leave-one-subject-out experiments. The cross-session experiment is conducted across two public datasets and one laboratory dataset. On the public datasets of BCI Competition IV 2a and BCI Competition IV 2b, MSTFNet achieves classification accuracies of 83.62% and 89.26%, respectively. On the laboratory dataset, MSTFNet achieves 86.68% classification accuracy. Besides, the leave-one-subject-out experiment is performed on the BCI Competition IV 2a dataset, and MSTFNet achieves 66.31% classification accuracy. These experimental results outperform several state-of-the-art methodologies, indicate the proposed MSTFNet's robust capability in decoding EEG signals associated with motor imagery.

2.
Endokrynol Pol ; 75(4): 339-358, 2024.
Article in English | MEDLINE | ID: mdl-39279304

ABSTRACT

Advances in the diagnosis and treatment of adrenocortical carcinoma (ACC), along with the development of new therapeutic and diagnostic methods, have prompted a team of experts to formulate the first Polish guidelines for managing ACC. This article presents the diagnostic and therapeutic recommendations resulting from the discussion of specialists from various medical specialities, who participated in a series of online meetings aimed at developing consistent and effective recommendations under the National Oncology Strategy. These guidelines aim to optimise ACC treatment in Poland through coordinated efforts of multidisciplinary specialist teams, ensuring an effective and modern approach.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Humans , Adrenocortical Carcinoma/diagnosis , Adrenocortical Carcinoma/therapy , Poland , Adrenal Cortex Neoplasms/diagnosis , Adrenal Cortex Neoplasms/therapy , Practice Guidelines as Topic , Female , Male , Medical Oncology/standards
3.
Neural Netw ; 180: 106655, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39226850

ABSTRACT

A Brain-computer interface (BCI) system establishes a novel communication channel between the human brain and a computer. Most event related potential-based BCI applications make use of decoding models, which requires training. This training process is often time-consuming and inconvenient for new users. In recent years, deep learning models, especially participant-independent models, have garnered significant attention in the domain of ERP classification. However, individual differences in EEG signals hamper model generalization, as the ERP component and other aspects of the EEG signal vary across participants, even when they are exposed to the same stimuli. This paper proposes a novel One-source domain transfer learning method based Attention Domain Adversarial Neural Network (OADANN) to mitigate data distribution discrepancies for cross-participant classification tasks. We train and validate our proposed model on both a publicly available OpenBMI dataset and a Self-collected dataset, employing a leave one participant out cross validation scheme. Experimental results demonstrate that the proposed OADANN method achieves the highest and most robust classification performance and exhibits significant improvements when compared to baseline methods (CNN, EEGNet, ShallowNet, DeepCovNet) and domain generalization methods (ERM, Mixup, and Groupdro). These findings underscore the efficacy of our proposed method.

4.
IEEE Trans Biomed Eng ; PP2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120991

ABSTRACT

In steady-state visual evoked potential (SSVEP)based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the necessary calibration procedures take time, cause visual fatigue and reduce usability. For the calibration-free scenario, we propose a cross-subject frequency identification method based on transfer superimposed theory for SSVEP frequency decoding. First, a multi-channel signal decomposition model was constructed. Next, we used the cross least squares iterative method to create individual specific transfer spatial filters as well as source subject transfer superposition templates in the source subject. Then, we identified common knowledge among source subjects using a prototype spatial filter to make common transfer spatial filters and common impulse responses. Following, we reconstructed a global transfer superimposition template with SSVEP frequency characteristics. Finally, an ensemble cross-subject transfer learning method was proposed for SSVEP frequency recognition by combining the sourcesubject transfer mode, the global transfer mode, and the sinecosine reference template. Offline tests on two public datasets show that the proposed method significantly outperforms the FBCCA, TTCCA, and CSSFT methods. More importantly, the proposed method can be directly used in online SSVEP recognition without calibration. The proposed algorithm was robust, which is important for a practical BCI.

5.
J Neural Eng ; 21(4)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38848710

ABSTRACT

Objective.Event-related potentials (ERPs) are cerebral responses to cognitive processes, also referred to as cognitive potentials. Accurately decoding ERPs can help to advance research on brain-computer interfaces (BCIs). The spatial pattern of ERP varies with time. In recent years, convolutional neural networks (CNNs) have shown promising results in electroencephalography (EEG) classification, specifically for ERP-based BCIs.Approach.This study proposes an auto-segmented multi-time window dual-scale neural network (AWDSNet). The combination of a multi-window design and a lightweight base network gives AWDSNet good performance at an acceptable cost of computing. For each individual, we create a time window set by calculating the correlation of signedR-squared values, which enables us to determine the length and number of windows automatically. The signal data are segmented based on the obtained window sets in sub-plus-global mode. Then, the multi-window data are fed into a dual-scale CNN model, where the sizes of the convolution kernels are determined by the window sizes. The use of dual-scale spatiotemporal convolution focuses on feature details while also having a large enough receptive length, and the grouping parallelism undermines the increase in the number of parameters that come with dual scaling.Main results.We evaluated the performance of AWDSNet on a public dataset and a self-collected dataset. A comparison was made with four popular methods including EEGNet, DeepConvNet, EEG-Inception, and PPNN. The experimental results show that AWDSNet has excellent classification performance with acceptable computational complexity.Significance.These results indicate that AWDSNet has great potential for applications in ERP decoding.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Evoked Potentials , Neural Networks, Computer , Humans , Electroencephalography/methods , Evoked Potentials/physiology , Male , Adult , Female , Young Adult , Time Factors
6.
J Neural Eng ; 21(3)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38885683

ABSTRACT

Objective. In brain-computer interfaces (BCIs) that utilize motor imagery (MI), minimizing calibration time has become increasingly critical for real-world applications. Recently, transfer learning (TL) has been shown to effectively reduce the calibration time in MI-BCIs. However, variations in data distribution among subjects can significantly influence the performance of TL in MI-BCIs.Approach.We propose a cross-dataset adaptive domain selection transfer learning framework that integrates domain selection, data alignment, and an enhanced common spatial pattern (CSP) algorithm. Our approach uses a huge dataset of 109 subjects as the source domain. We begin by identifying non-BCI illiterate subjects from this huge dataset, then determine the source domain subjects most closely aligned with the target subjects using maximum mean discrepancy. After undergoing Euclidean alignment processing, features are extracted by multiple composite CSP. The final classification is carried out using the support vector machine.Main results.Our findings indicate that the proposed technique outperforms existing methods, achieving classification accuracies of 75.05% and 76.82% in two cross-dataset experiments, respectively.Significance.By reducing the need for extensive training data, yet maintaining high accuracy, our method optimizes the practical implementation of MI-BCIs.


Subject(s)
Brain-Computer Interfaces , Imagination , Transfer, Psychology , Humans , Imagination/physiology , Transfer, Psychology/physiology , Support Vector Machine , Electroencephalography/methods , Movement/physiology , Algorithms , Machine Learning , Databases, Factual , Male
7.
IEEE Trans Cybern ; 54(9): 5565-5576, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38713574

ABSTRACT

Event-related potentials (ERPs) reflect neurophysiological changes of the brain in response to external events and their associated underlying complex spatiotemporal feature information is governed by ongoing oscillatory activity within the brain. Deep learning methods have been increasingly adopted for ERP-based brain-computer interfaces (BCIs) due to their excellent feature representation abilities, which allow for deep analysis of oscillatory activity within the brain. Features with higher spatiotemporal frequencies usually represent detailed and localized information, while features with lower spatiotemporal frequencies usually represent global structures. Mining EEG features from multiple spatiotemporal frequencies is conducive to obtaining more discriminative information. A multiscale feature fusion octave convolution neural network (MOCNN) is proposed in this article. MOCNN divides the ERP signals into high-, medium- and low-frequency components corresponding to different resolutions and processes them in different branches. By adding mid- and low-frequency components, the feature information used by MOCNN can be enriched, and the required amount of calculations can be reduced. After successive feature mapping using temporal and spatial convolutions, MOCNN realizes interactive learning among different components through the exchange of feature information among branches. Classification is accomplished by feeding the fused deep spatiotemporal features from various components into a fully connected layer. The results, obtained on two public datasets and a self-collected ERP dataset, show that MOCNN can achieve state-of-the-art ERP classification performance. In this study, the generalized concept of octave convolution is introduced into the field of ERP-BCI research, which allows effective spatiotemporal features to be extracted from multiscale networks through branch width optimization and information interaction at various scales.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Evoked Potentials , Neural Networks, Computer , Signal Processing, Computer-Assisted , Humans , Electroencephalography/methods , Evoked Potentials/physiology , Deep Learning , Brain/physiology , Algorithms
8.
Article in English | MEDLINE | ID: mdl-38598402

ABSTRACT

Canonical correlation analysis (CCA), Multivariate synchronization index (MSI), and their extended methods have been widely used for target recognition in Brain-computer interfaces (BCIs) based on Steady State Visual Evoked Potentials (SSVEP), and covariance calculation is an important process for these algorithms. Some studies have proved that embedding time-local information into the covariance can optimize the recognition effect of the above algorithms. However, the optimization effect can only be observed from the recognition results and the improvement principle of time-local information cannot be explained. Therefore, we propose a time-local weighted transformation (TT) recognition framework that directly embeds the time-local information into the electroencephalography signal through weighted transformation. The influence mechanism of time-local information on the SSVEP signal can then be observed in the frequency domain. Low-frequency noise is suppressed on the premise of sacrificing part of the SSVEP fundamental frequency energy, the harmonic energy of SSVEP is enhanced at the cost of introducing a small amount of high-frequency noise. The experimental results show that the TT recognition framework can significantly improve the recognition ability of the algorithms and the separability of extracted features. Its enhancement effect is significantly better than the traditional time-local covariance extraction method, which has enormous application potential.


Subject(s)
Brain-Computer Interfaces , Humans , Evoked Potentials, Visual , Pattern Recognition, Automated/methods , Recognition, Psychology , Electroencephalography/methods , Algorithms , Photic Stimulation
9.
Front Hum Neurosci ; 17: 1243750, 2023.
Article in English | MEDLINE | ID: mdl-38021234

ABSTRACT

Introduction: The common spatial patterns (CSP) algorithm is the most popular technique for extracting electroencephalogram (EEG) features in motor imagery based brain-computer interface (BCI) systems. CSP algorithm embeds the dimensionality of multichannel EEG data to extract features of motor imagery tasks. Most previous studies focused on the optimization of the time domain and the spectrum domain of EEG signal to improve the effectiveness of CSP, whereas ignoring the constraint on the projected feature space. Methods: This study proposed a variance characteristic preserving CSP (VPCSP) that is modified by a regularization item based on graph theory. Specifically, we calculated the loss of abnormalities of the projected data while preserving the variance characteristic locally. Then the loss could be rewritten as a matrix with the introduction of the Laplace matrix, which turned it into a generalized eigenvalue problem equivalent to CSP. This study evaluated the proposed method on two public EEG datasets from the BCI competition. The modified method could extract robust and distinguishable features that provided higher classification performance. Experimental results showed that the proposed regularization improved the effectiveness of CSP significantly and achieved superior performance compared with reported modified CSP algorithms significantly. Results: The classification accuracy of the proposed method achieved 87.88 %, 90.07 %, and 76.06 % on public dataset IV part I, III part IVa and the self-collected dataset, respectively. Comparative experiments are conducted on two public datasets and one self-collected dataset. Results showed that the proposed method outperformed the reported algorithm. Discussion: The proposed method can extract robust features to increase the performance of BCI systems. And the proposal still has expandability. These results show that our proposal is a promising candidate for the performance improvement of MI-BCI.

10.
Cogn Neurodyn ; 17(5): 1283-1296, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37786654

ABSTRACT

Multi-channel electroencephalography (EEG) is used to capture features associated with motor imagery (MI) based brain-computer interface (BCI) with a wide spatial coverage across the scalp. However, redundant EEG channels are not conducive to improving BCI performance. Therefore, removing irrelevant channels can help improve the classification performance of BCI systems. We present a new method for identifying relevant EEG channels. Our method is based on the assumption that useful channels share related information and that this can be measured by inter-channel connectivity. Specifically, we treat all candidate EEG channels as a graph and define channel selection as the problem of node classification on a graph. Then we design a graph convolutional neural network (GCN) model for channels classification. Channels are selected based on the outputs of our GCN model. We evaluate our proposed GCN-based channel selection (GCN-CS) method on three MI datasets. On three datasets, GCN-CS achieves performance improvements by reducing the number of channels. Specifically, we achieve classification accuracies of 79.76% on Dataset 1, 89.14% on Dataset 2 and 87.96% on Dataset 3, which outperform competing methods significantly.

11.
J Neurosci Methods ; 399: 109969, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37683772

ABSTRACT

Learning distinguishable features from raw EEG signals is crucial for accurate classification of motor imagery (MI) tasks. To incorporate spatial relationships between EEG sources, we developed a feature set based on an EEG graph. In this graph, EEG channels represent the nodes, with power spectral density (PSD) features defining their properties, and the edges preserving the spatial information. We designed an EEG based graph self-attention network (EGSAN) to learn low-dimensional embedding vector for EEG graph, which can be used as distinguishable features for motor imagery task classification. We evaluated our EGSAN model on two publicly available MI EEG datasets, each containing different types of motor imagery tasks. Our experiments demonstrate that our proposed model effectively extracts distinguishable features from EEG graphs, achieving significantly higher classification accuracies than existing state-of-the-art methods.


Subject(s)
Algorithms , Brain-Computer Interfaces , Learning , Electroencephalography/methods , Imagination
12.
Article in English | MEDLINE | ID: mdl-37607136

ABSTRACT

Mental workload can be monitored in real time, which helps us improve work efficiency by maintaining an appropriate workload level. Based on previous studies, we have known that features, such as band power and brain connectivity, can be utilized to classify the levels of mental workload. As band power and brain connectivity represent different but complementary information related to mental workload, it is helpful to integrate them together for workload classification. Although deep learning models have been utilized for workload classification based on EEG, the classification performance is not satisfactory. This is because the current models cannot well tackle variances in the features extracted from non-stationary EEG. In order to address this problem, we, in this study, proposed a novel deep learning model, called latent space coding capsule network (LSCCN). The features of band power and brain connectivity were fused and then modelled in a latent space. The subsequent convolutional and capsule modules were used for workload classification. The proposed LSCCN was compared to the state-of-the-art methods. The results demonstrated that the proposed LSCCN was superior to the compared methods. LSCCN achieved a higher testing accuracy with a relatively smaller standard deviation, indicating a more reliable classification across participants. In addition, we explored the distribution of the features and found that top discriminative features were localized in the frontal, parietal, and occipital regions. This study not only provides a novel deep learning model but also informs further studies in workload classification and promotes practical usage of workload monitoring.


Subject(s)
Brain , Occipital Lobe , Humans , Workload
13.
PLoS One ; 18(8): e0289293, 2023.
Article in English | MEDLINE | ID: mdl-37527271

ABSTRACT

"Faster, higher, stronger" is the motto of any professional athlete. Does that apply to brain dynamics as well? In our paper, we performed a series of EEG experiments on Visually Evoked Potentials and a series of cognitive tests-reaction time and visual search, with professional eSport players in Counter-Strike: Global Offensive (CS:GO) and novices (control group) in order to find important differences between them. EEG data were studied in a temporal domain by Event-Related Potentials (ERPs) and in a frequency domain by Variational Mode Decomposition. The EEG analysis showed that the brain reaction of eSport players is faster (P300 latency is earlier on average by 20-70 ms, p < 0.005) and stronger (P300 peak amplitude is higher on average by 7-9 mkV, p < 0.01). Professional eSport players also exhibit stronger stimulus-locked alpha-band power. Besides, the Spearman correlation analysis showed a significant correlation between hours spend in CS:GO and mean amplitude of P200 and N200 for the professional players. The comparison of cognitive test results showed the superiority of the professional players to the novices in reaction time (faster) and choice reaction time-faster reaction, but similar correctness, while a significant difference in visual search skills was not detected. Thus, significant differences in EEG signals (in spectrograms and ERPs) and cognitive test results (reaction time) were detected between the professional players and the control group. Cognitive tests could be used to separate skilled players from novices, while EEG testing can help to understand the skilled player's level. The results can contribute to understanding the impact of eSport on a player's cognitive state and associating eSport with a real sport. Moreover, the presented results can be useful for evaluating eSport team members and making training plans.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Evoked Potentials/physiology , Reaction Time/physiology , Neuropsychological Tests , Biomarkers , Event-Related Potentials, P300/physiology
14.
Article in English | MEDLINE | ID: mdl-37436869

ABSTRACT

Motor imagery (MI) is a popular paradigm for controlling electroencephalogram (EEG) based Brain-Computer Interface (BCI) systems. Many methods have been developed to attempt to accurately classify MI-related EEG activity. Recently, the development of deep learning has begun to draw increasing attention in the BCI research community because it does not need to use sophisticated signal preprocessing and can automatically extract features. In this paper, we propose a deep learning model for use in MI-based BCI systems. Our model makes use of a convolutional neural network based on a multi-scale and channel-temporal attention module (CTAM), which called MSCTANN. The multi-scale module is able to extract a large number of features, while the attention module includes both a channel attention module and a temporal attention module, which together allow the model to focus attention on the most important features extracted from the data. The multi-scale module and the attention module are connected by a residual module, which avoids the degradation of the network. Our network model is built from these three core modules, which combine to improve the recognition ability of the network for EEG signals. Our experimental results on three datasets (BCI competition IV 2a, III IIIa and IV 1) show that our proposed method has better performance than other state-of-the-art methods, with accuracy rates of 80.6%, 83.56% and 79.84%. Our model has stable performance in decoding EEG signals and achieves efficient classification performance while using fewer network parameters than other comparable state-of-the-art methods.


Subject(s)
Brain-Computer Interfaces , Imagination , Humans , Neural Networks, Computer , Electroencephalography/methods , Recognition, Psychology , Algorithms
15.
Front Oncol ; 13: 1018475, 2023.
Article in English | MEDLINE | ID: mdl-37051540

ABSTRACT

Purpose: Adrenal gland is a common site of metastasis and on the other hand, metastases are the most frequent malignant adrenal tumors. The aim of this study was to estimate the risk of malignancy in suspicious adrenal mass in patients with a history of cancer. Methods: This is a single-center retrospective analysis of patients with adrenal tumors treated previously for different types of cancers. Between 2004 and 2021 a hundred and six such patients were identified. Mean age of patients was 62.6 years (30-78), and mean time from oncologic treatment was 55.8 months (0-274). The most common primary cancer was kidney (RCC): 29 (27.4%), colon/rectum (CRC): 20 (18.9%) and lung (NSCLC): 20 (18.9%). Results: Of 106 patients, 12 had hormonally active (HA) (11,3%) and 94 (88,7%) non active (HNA) tumors In group of patients with HA tumours 4 had hypercortisolaemia and 8 had elevation of urinary metanephrines. In the first group of HA patients pathology confirmed preoperative diagnosis of adrenocortical cancer and no metastasis was found. In all patients from the second group pheochromocytomas were confirmed. Primary (PM) and secondary (SM) malignancies were found in 50 patients (47.2%). In hormone inactive group only SM - 46/94 (48.9%) were diagnosed. The odds that adrenal lesion was a metastasis were higher if primary cancer was RCC (OR 4.29) and NSCLC (OR 12.3). Metastases were also more likely with high native tumor density, and bigger size in CT. The cut-off values for tumor size and native density calculated from receiver operating characteristic (ROC) curves were 37mm and 24, respectively. Conclusion: Risk of malignancy of adrenal mass in a patient with a history of cancer is high (47,2%), regardless of hormonal status. 47,2% risk of malignancy. In preoperative assessment type of primary cancer, adrenal tumour size and native density on CT should be taken into consideration as predictive factors of malignancy. Native density exceeding 24 HU was the strongest risk factor of adrenal malignancy (RR 3.23), followed by history of lung or renal cancer (RR 2.82) and maximum tumor diameter over 37 mm (RR 2.14).

16.
Psychiatry Res Neuroimaging ; 332: 111631, 2023 07.
Article in English | MEDLINE | ID: mdl-37030146

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is known to be associated with several diagnostic resting-state electroencephalography (EEG) patterns, including the theta/beta ratio, but no objective predictive markers for each medication. In this study, we explored EEG markers with which the therapeutic efficacy of medications could be estimated at the 1st clinical visit. Thirty-two ADHD patients and thirty-one healthy subjects participated in this study. EEG was recorded during eyes-closed resting conditions, and ADHD symptoms were scored before and after the therapeutic intervention (8 ± 2 weeks). Although comparing EEG patterns between ADHD patients and healthy subjects showed significant differences, EEG dynamics, e.g., theta/beta ratio, in ADHD patients before and after MPH treatment were not significantly different despite improvements in ADHD symptoms. We demonstrated that MPH good responders and poor responders, defined by the efficacy of MPH, had significantly different theta band power in right temporal areas, alpha in left occipital and frontal areas, and beta in left frontal areas. Moreover, we showed that MPH good responders had significant improvements toward normalization in several coherence measures after MPH treatment. Our study implies the possibility of these EEG indices as predictive markers for ADHD therapeutic efficacy.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Methylphenidate , Humans , Attention Deficit Disorder with Hyperactivity/drug therapy , Electroencephalography
17.
J Clin Med ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36769439

ABSTRACT

Neuroendocrine neoplasms of the small intestine (SI-NENs) are one of the most commonly recognized gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Carcinoid heart disease (CHD) is the primary cause of death in patients with the carcinoid syndrome (CS). The aim of this retrospective study was to evaluate possible factors impacting upon overall survival (OS) in subjects with both neuroendocrine tumors (NETs) G1/G2 of the small intestine (SI-NET) and CHD. Enrolled in our study of 275 patients with confirmed G1/G2 SI-NET, were 28 (10%) individuals with CHD. Overall survival was assessed using the Kaplan-Meier method. The Cox-Mantel test was used to determine how OS varied between groups. A Cox proportional hazards model was used to conduct univariate analyses of predictive factors for OS and estimate hazard ratios (HRs). Of the 28 individuals with confirmed carcinoid heart disease, 12 (43%) were found to have NET G1 and 16 (57%) were found to have NET G2. Univariate analysis revealed that subjects with CHD and without resection of the primary tumor had a lower OS. Our retrospective study observed that patients who presented with CHD and without resection of primary tumor had worse prognosis of survival. These results suggest that primary tumors may need to be removed when feasible, but further research is needed. However, no solid recommendations can be issued on the basis of our single retrospective study.

18.
IEEE Trans Neural Netw Learn Syst ; 34(8): 4881-4891, 2023 Aug.
Article in English | MEDLINE | ID: mdl-34788223

ABSTRACT

In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l0 matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets.

19.
IEEE Trans Neural Netw Learn Syst ; 34(8): 4096-4105, 2023 Aug.
Article in English | MEDLINE | ID: mdl-34648459

ABSTRACT

The steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has received extensive attention in research for the less training time, excellent recognition performance, and high information translate rate. At present, most of the powerful SSVEPs detection methods are similarity measurements based on spatial filters and Pearson's correlation coefficient. Among them, the task-related component analysis (TRCA)-based method and its variant, the ensemble TRCA (eTRCA)-based method, are two methods with high performance and great potential. However, they have a defect, that is, they can only suppress certain kinds of noise, but not more general noises. To solve this problem, a novel time filter was designed by introducing the temporally local weighting into the objective function of the TRCA-based method and using the singular value decomposition. Based on this, the time filter and (e)TRCA-based similarity measurement methods were proposed, which can perform a robust similarity measure to enhance the detection ability of SSVEPs. A benchmark dataset recorded from 35 subjects was used to evaluate the proposed methods and compare them with the (e)TRCA-based methods. The results indicated that the proposed methods performed significantly better than the (e)TRCA-based methods. Therefore, it is believed that the proposed time filter and the similarity measurement methods have promising potential for SSVEPs detection.

20.
Article in English | MEDLINE | ID: mdl-36288214

ABSTRACT

Motor imagery-based brain-computer interfaces (MI-BCIs) features are generally extracted from a wide fixed frequency band and time window of EEG signal. The performance suffers from individual differences in corresponding time to MI tasks. In order to solve the problem, in this study, we propose a novel method named Riemannian sparse optimization and Dempster-Shafer fusion of multi-time-frequency patterns (RSODSF) to enhance the decoding efficiency. First, we effectively combine the Riemannian geometry of the spatial covariance matrix with sparse optimization to extract more robust and distinct features. Second, the Dempster-Shafer theory is introduced and used to fuse each time window after sparse optimization of Riemannian features. Besides, the probabilistic values of the support vector machine (SVM) are obtained and transformed to effectively fuse multiple classifiers to leverage potential soft information of multiple trained SVM. The open-access BCI Competition IV dataset IIa and Competition III dataset IIIa are employed to evaluate the performance of the proposed RSODSF. It achieves higher average accuracy (89.7% and 96.8%) than state-of-the-art methods. The improvement over the common spatial patterns (SFBCSP) are respectively 9.9% and 12.4% (p < 0.01, paired t-test). These results show that our proposed RSODSF method is a promising candidate for the performance improvement of MI-BCI.


Subject(s)
Brain-Computer Interfaces , Imagination , Humans , Electroencephalography/methods , Support Vector Machine , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL