Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(47): E10178-E10186, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109255

ABSTRACT

Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α1-Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells (CreSPC/HOIL-1Lfl/fl ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α1-Na,K-ATPase construct bearing an S18A (α1-S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α1-S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of CreSPC/HOIL-1Lfl/fl mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.


Subject(s)
Carrier Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/pathology , Lung Injury/pathology , Protein Kinase C/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , A549 Cells , Animals , Apoptosis , COS Cells , Carrier Proteins/genetics , Cell Hypoxia , Cell Membrane/metabolism , Chlorocebus aethiops , Down-Regulation , Endocytosis , Epithelial Cells/pathology , Humans , Hypoxia/complications , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung Injury/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Mutation , Phosphorylation , Primary Cell Culture , Proteolysis , Pulmonary Alveoli/cytology , Pulmonary Alveoli/pathology , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Sodium-Potassium-Exchanging ATPase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...