Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(19): 31072-31081, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710635

ABSTRACT

Classical terahertz spectroscopy usually requires the use of Fourier transform or Time-Domain Spectrometers. However, these classical techniques become impractical when using recent high peak power terahertz sources - based on intense lasers or accelerators - which operate at low repetition rate. We present and test the design of a novel Time-Domain Spectrometer, that is capable of recording a whole terahertz spectrum at each shot of the source, and that uses a 1550 nm probe fiber laser. Single-shot operation is obtained using chirped-pulse electro-optic sampling in Gallium Arsenide, and high bandwidth is obtained by using the recently introduced Diversity Electro-Optic Sampling (DEOS) method. We present the first real-time measurements of THz spectra at the TeraFERMI Coherent Transition Radiation source. The system achieves 2.5 THz bandwidth with a maximum dynamic range reaching up to 25 dB. By reducing the required measurement time from minutes to a split-second, this strategy dramatically expands the application range of high power low-repetition rate THz sources.

2.
J Synchrotron Radiat ; 22(3): 485-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25931057

ABSTRACT

FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.

3.
Nat Commun ; 4: 2476, 2013.
Article in English | MEDLINE | ID: mdl-24048228

ABSTRACT

Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...