Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Control ; 31: 10732748241270564, 2024.
Article in English | MEDLINE | ID: mdl-39118322

ABSTRACT

Despite improvements in patient outcomes, pediatric cancer remains a leading cause of non-accidental death in children. Recent genetic analysis of patients with pediatric cancers indicates an important role for both germline genetic predisposition and cancer-specific somatic driver mutations. Increasingly, evidence demonstrates that the developmental timepoint at which the cancer cell-of-origin transforms is critical to tumor identity and therapeutic response. Therefore, future therapeutic development would be bolstered by the use of disease models that faithfully recapitulate the genetic context, cell-of-origin, and developmental window of vulnerability in pediatric cancers. Human stem cells have the potential to incorporate all of these characteristics into a pediatric cancer model, while serving as a platform for rapid genetic and pharmacological testing. In this review, we describe how human stem cells have been used to model pediatric cancers and how these models compare to other pediatric cancer model modalities.


Today, pediatric cancer is a leading cause of non-accidental death in children. In order to further improve outcomes, it is important for researchers and clinicians alike to recognize how pediatric cancers are distinct from adult cancers. Inherited risk of cancer may play a greater role in pediatric cancer risk, and subsequent tumor-specific acquired driver mutations initiate tumor formation. However, there is substantial interaction between inherited and acquired mutations, which supports consideration of both simultaneously. Recent advancements in biotechnology, have improved matching between early cells of development and pediatric cancer cells, although cell-of-origin for certain pediatric central nervous system tumors remain elusive. Increasingly, evidence, particularly in pediatric medulloblastoma, demonstrates that the developmental timepoint at which the cancer cell-of-origin transforms is critical to tumor identity and therapeutic response. Therefore, future therapeutic development would be bolstered by the use of disease models that faithfully recapitulate the genetic context, cell-of-origin, and developmental window of pediatric cancers. Human stem cells have the potential to incorporate all of these characteristics into a pediatric cancer model, while serving as a platform for rapid genetic and pharmacological testing. In this review, we describe how human stem cells have been used to model pediatric cancers, how human these models compare to other pediatric cancer model modalities, and how these models can be improved in the future.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Child , Stem Cells , Models, Biological
2.
Sci Transl Med ; 11(503)2019 07 31.
Article in English | MEDLINE | ID: mdl-31366578

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. There are currently no approved treatments for RTT. The expression of K+/Cl- cotransporter 2 (KCC2), a neuron-specific protein, has been found to be reduced in human RTT neurons and in RTT mouse models, suggesting that KCC2 might play a role in the pathophysiology of RTT. To develop neuron-based high-throughput screening (HTS) assays to identify chemical compounds that enhance the expression of the KCC2 gene, we report the generation of a robust high-throughput drug screening platform that allows for the rapid assessment of KCC2 gene expression in genome-edited human reporter neurons. From an unbiased screen of more than 900 small-molecule chemicals, we have identified a group of compounds that enhance KCC2 expression termed KCC2 expression-enhancing compounds (KEECs). The identified KEECs include U.S. Food and Drug Administration-approved drugs that are inhibitors of the fms-like tyrosine kinase 3 (FLT3) or glycogen synthase kinase 3ß (GSK3ß) pathways and activators of the sirtuin 1 (SIRT1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) pathways. Treatment with hit compounds increased KCC2 expression in human wild-type (WT) and isogenic MECP2 mutant RTT neurons, and rescued electrophysiological and morphological abnormalities of RTT neurons. Injection of KEEC KW-2449 or piperine in Mecp2 mutant mice ameliorated disease-associated respiratory and locomotion phenotypes. The small-molecule compounds described in our study may have therapeutic effects not only in RTT but also in other neurological disorders involving dysregulation of KCC2.


Subject(s)
Methyl-CpG-Binding Protein 2/metabolism , Neurons/cytology , Rett Syndrome/metabolism , Symporters/metabolism , Anilides/pharmacology , Animals , Benzimidazoles/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Electroretinography , Enzyme Inhibitors/pharmacology , Female , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Indazoles/pharmacology , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Neurons/drug effects , Piperazines/pharmacology , Piperidines/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Sirtuin 1/metabolism , Sunitinib/pharmacology , Symporters/genetics , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , K Cl- Cotransporters
SELECTION OF CITATIONS
SEARCH DETAIL