Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1005344, 2022.
Article in English | MEDLINE | ID: mdl-36211411

ABSTRACT

Introduction: Children in low-mid income countries, and First Nations children in high-income countries, experience disproportionately high rates of Streptococcus pneumoniae and Haemophilus influenzae infections and diseases including pneumonia and otitis media. We previously observed that infants from Papua New Guinea had no evidence of waning maternal immunity for H. influenzae-specific antibodies. In this study, we assessed S. pneumoniae and H. influenzae antibody titres in Australian First Nation mothers and infants to determine antigen-specific antibody ontogenies and whether H. influenzae antibody titres in infants were due to low maternal antibody titres or lack of placental transfer. Methods: Breast milk, infant nasopharyngeal swabs and ear assessment data were collected 1-, 2-, 7-months post-birth as well as maternal, cord and 7-month-old infant sera, from 85 Australian Aboriginal and Torres Strait Islander mother-infant pairs. Serum IgG and breast milk IgG and IgA antibody titres to S. pneumoniae antigens (PspA1, PspA2, CbpA, Ply) and H. influenzae antigens (PD, ChimV4, OMP26, rsPilA) were measured. Results: IgG titres in maternal and cord sera were similar for all antigens, except Ply (higher in cord; p=0.004). Sera IgG titres at 7-months of age were lower than cord sera IgG titres for all S. pneumoniae antigens (p<0.001). Infant sera IgG titres were higher than cord sera for H. influenzae PD (p=0.029), similar for OMP26 (p=0.817) and rsPilA (p=0.290), and lower for ChimV4 (p=0.004). Breast milk titres were similar for all antigens at 1, 2 and 7-months except OMP26 IgA (lower at 7-months than 1-month; p=0.035), PspA2 IgG (p=0.012) and Ply IgG that increased by 7-months (p=0.032). One third of infants carried nontypeable Haemophilus influenzae (NTHi), 45% carried S. pneumoniae and 52% had otitis media (OM) observed at least once over the 7-months. 73% of infants who carried either S. pneumoniae or NTHi, also had otitis media observed. Conclusions: Similarities between maternal and cord IgG titres, and absence of waning, support a lack of maternal H. influenzae IgG antibodies available for cross-placental transfer. Increased maternal anti-PD IgG could offer some protection from early carriage with NTHi, and maternal immunisation strategies should be considered for passive-active immunisation of infants to protect against S. pneumoniae and H. influenzae diseases. Trial registration: ClinicalTrials.gov NCT00714064 and NCT00310349.


Subject(s)
Otitis Media , Pneumonia , Antibodies, Bacterial , Antigens, Bacterial , Australia/epidemiology , Female , Haemophilus influenzae , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Milk, Human , Placenta , Pregnancy , Streptococcus pneumoniae
2.
Front Cell Infect Microbiol ; 12: 767083, 2022.
Article in English | MEDLINE | ID: mdl-35463651

ABSTRACT

Background: Nontypeable Haemophilus influenzae (NTHi) is the most common bacterial otopathogen associated with otitis media (OM). NTHi persists in biofilms within the middle ears of children with chronic and recurrent OM. Australian Aboriginal children suffer exceptionally high rates of chronic and recurrent OM compared to non-Aboriginal children. NTHi protein vaccines comprised of antigens associated with both adhesion and persistence in a biofilm are under development and could be beneficial for children with chronic and recurrent OM. Understanding the ontogeny of natural antibody development to these antigens provides insight into the value of vaccinating with particular antigens. Methods: An in-house multiplex fluorescent bead immunoassay was used to measure serum IgG titres and avidity for three putative vaccine antigens: recombinant soluble PilA (rsPilA), ChimV4, and outer membrane protein 26 (OMP26) in sera from Australian Aboriginal otitis-prone children (n=77), non-Aboriginal otitis-prone children (n=70) and non-otitis-prone children (n=36). Serum IgG titres were adjusted for age, and geometric mean concentrations (GMCs) were compared between groups using a univariate analysis model. Antibody avidity was calculated as a relative avidity index and compared between groups using ANOVA. Results: Australian Aboriginal otitis-prone children had lower serum IgG titres to rsPilA and ChimV4 than non-Aboriginal otitis-prone children (p<0.001), and non-otitis-prone children (p<0.020). No differences were observed between serum IgG titres from non-Aboriginal otitis-prone children and non-otitis-prone children. There were also no differences in the proportion of high avidity IgG specific for these antigens between these groups. Serum IgG titres to OMP26 were similar between all groups (p>0.670) although otitis-prone children had a higher proportion of high avidity antibodies to this antigen. Conclusions: Australian Aboriginal otitis-prone children had lower serum IgG titres to 2/3 major NTHi vaccine candidate antigens, suggesting these children are unable to develop persistent IgG responses due to repeated NTHi exposure. These reduced IgG titres may relate to earlier and more frequent exposure to diverse NTHi strains in Aboriginal children through carriage or infection. These data suggest that Aboriginal children may benefit from immunisation with vaccines containing these antigens to increase titres of protective antibodies.


Subject(s)
Haemophilus Infections , Haemophilus Vaccines , Otitis Media , Otitis , Antibodies, Bacterial , Australia , Child , Haemophilus Infections/microbiology , Haemophilus influenzae , Humans , Immunoglobulin G , Otitis Media/microbiology
3.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31964748

ABSTRACT

Nasopharyngeal colonization with nontypeable Haemophilus influenzae (NTHi) is a prerequisite for developing NTHi-associated infections, including otitis media. Therapies that block NTHi colonization may prevent disease development. We previously demonstrated that Haemophilus haemolyticus, a closely related human commensal, can inhibit NTHi colonization and infection of human respiratory epithelium in vitro We have now assessed whether Muribacter muris (a rodent commensal from the same family) can prevent NTHi colonization and disease in vivo using a murine NTHi otitis media model. Otitis media was modeled in BALB/c mice using coinfection with 1 × 104.5 PFU of influenza A virus MEM H3N2, followed by intranasal challenge with 5 × 107 CFU of NTHi R2866 Specr Mice were pretreated or not with an intranasal inoculation of 5 × 107 CFU M. muris 24 h before coinfection. NTHi and M. muris viable counts and inflammatory mediators (gamma interferon [IFN-γ], interleukin-1ß [IL-1ß], IL-6, keratinocyte chemoattractant [KC], and IL-10) were measured in nasal washes and middle ear tissue homogenate. M. muris pretreatment decreased the median colonization density of NTHi from 6 × 105 CFU/ml to 9 × 103 CFU/ml (P = 0.0004). Only 1/12 M. muris-pretreated mice developed otitis media on day 5 compared to 8/15 mice with no pretreatment (8% versus 53%, P = 0.0192). Inflammation, clinical score, and weight loss were also lower in M. muris-pretreated mice. We have demonstrated that a single dose of a closely related commensal can delay onset of NTHi otitis media in vivo Human challenge studies investigating prevention of NTHi colonization are warranted to reduce the global burden of otitis media and other NTHi diseases.


Subject(s)
Antibiosis , Carrier State/prevention & control , Haemophilus Infections/prevention & control , Haemophilus influenzae/growth & development , Otitis Media/prevention & control , Pasteurellaceae/growth & development , Administration, Intranasal , Animals , Colony Count, Microbial , Cytokines/analysis , Disease Models, Animal , Influenza A Virus, H3N2 Subtype/growth & development , Mice, Inbred BALB C , Nasal Mucosa/immunology , Nasopharynx/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...